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Why meta Reinforcement Learning?

“First Wave” of Deep Reinforcement Learning algorithms can learn to 
solve complex tasks and even achieve “superhuman” performance in 
some cases

Figures adapted from Finn and Levine ICML 19 tutorial on Meta Learning

Example: Space Invaders Example: Continuous Control tasks 
like Walker and Humanoid



Why meta Reinforcement Learning?
However these algorithms are not very efficient in terms of number 
of samples required to learn (and are “slow”)

Fig adapted from Finn and Levine ICML 19 tutorial on Meta Learning



Why meta Reinforcement Learning?
Humans (Animals) leverage prior knowledge when learning compared to RL 
algorithms that learn tabula rasa and hence can learn extremely quickly

Fig adapted from Animesh Garg 2020 “Human Learning in Atari”DDQN Experience (Hours of Gameplay)



Why meta Reinforcement Learning?

Fig adapted from Botvinick et al 19 

The Harlow’s Task

Can we “meta-learn” efficient RL algorithms that can 
leverage prior knowledge about the structure of 

naturally occuring tasks ?
Meta Reinforcement Learning



The meta RL problem

Finn and Levine ICML 19 tutorial on Meta Learning



The meta RL problem

Finn and Levine ICML 19 tutorial on Meta Learning



The meta RL problem : Training framework

Fig adapted from Finn and Levine ICML 19 tutorial on Meta LearningFig adapted from Botvinick et al 19

Example of a distribution of 
MDPs



Fig adapted from Finn and Levine ICML 19 tutorial on Meta Learning



Fig adapted from Finn and Levine ICML 19 tutorial on Meta Learning



Motivation 

• Alternate Perspective to Meta Reinforcement Learning

     (Probabilistic meta Reinforcement Learning) 

The process of Learning to solve a task can be considered as   
probabilistically inferring the task given observations

● Simple, effective exploration
● Elegant reduction to POMDP



Motivation 

• Alternate Perspective to Meta Reinforcement Learning

     (Probabilistic meta Reinforcement Learning)

The process of Learning to solve a task can be considered as   
probabilistically inferring the task given observations

Need to learn fast from less observations                    Low information regime                    Uncertainty in Task identity

Why probabilistic 
inference makes sense?

Uncertainty in Task identity can help agent balance exploration and exploitation
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Motivation 

• Probabilistic Meta RL : Use a particularly formulated partially observable 
markov decision processes (POMDP)

If each task is an MDP, the optimal agent (that initially doesn’t know the 
task ) is one that maximises rewards in a POMDP* with a single 
unobserved (static) state consisting of task specification

* Referred to meta-RL POMDP (Bayes-adaptive MDP in Bayesian RL literature)
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Motivation 

In general for POMDP, optimal policy depends on full history of 
observations, actions and rewards

Can this dependance on full history be captured by a sufficient statistic?

Yes, belief state. For our particular POMDP the relevant part of belief state is posterior 
distribution over the uncertain task specification given the agent’s experience thus far. 
Reasoning about this belief state is at the heart of Bayesian RL
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Motivation 

The given problem can be separated into 2 modules

1) Estimating this belief state                     Hard problem to solve

Why is this problem hard?

Estimating the belief state is intractable in most POMDPs

2) Acting based on this estimate of the belief state

But typically in meta RL, task distribution is under designer’s control and 
also task specification is available at meta-training. Can we take 
advantage of this privileged information?



Contributions 

1.  Demonstrate that leveraging cheap task specific information during 
meta-training  can boost performance of meta-RL algorithms

2.  Train meta-RL agents with recurrent policies efficiently with 
off-policy RL algorithms 

3.  Experimentally demonstrate that the agents can solve meta-RL 
problems in complex continuous control environment with sparse 
rewards and requiring long term memory

4.  Show that the agents can discover Bayes-optimal search strategy 



Preliminaries
POMDPs

Sequence of states is denoted by                                           and similarly for actions and rewards
Observed trajectory is denoted by                                                        

State Space

Action 
Space

Transition 
Distribution

Distribution 
of initial 
states

Reward 
Distribution 

Observation 
Space

Conditional  Observation probability given 
action ‘a’ and then transitioning to x’

Discount 
factor 
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Preliminaries
POMDPs

Optimal policy of POMDP

Belief state is given by

Belief state is sufficient 
statistic for optimal 
action

Joint distribution between 
trajectory and states



Preliminaries : Meta-RL with recurrent policies

Figures adapted from Finn and Levine ICML 2019 talk on Meta Learning

Meta RL objective

RNN policy



Preliminaries : Regularisation with 
Information Bottleneck

In supervised learning the 
goal is to learn a mapping                                                                                                                        
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loss is minimised



Preliminaries : Regularisation with 
Information Bottleneck

In supervised learning the 
goal is to learn a mapping                                                                                                                        
                         Such that the 
loss is minimised

In IB regularization

Is a stochastic encoder and Z is latent embedding of 
X
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The new regularised objective is: Intractable



Preliminaries : Regularisation with 
Information Bottleneck

The new regularised objective is: Intractable

However, it is upper bounded

Can be any arbitrary distribution but set to N(0,1) in 
practice



Approach : POMDP view of Meta RL 

: Task space with distribution of tasks 
Each task is given by (PO)MDP given by  

POMDP states  

POMDP action space is same as each task’s action space   

POMDP transitions  

POMDP initial state distribution   

POMDP reward distribution   

POMDP observation distribution is deterministic   



Approach : POMDP view of Meta RL 

Objective function to find 
optimal policy for 
meta-RL POMDP

Belief state for 
meta-RL POMDP

Posterior over tasks given what 
the agent has observed so far



Proof to facilitate off-policy learning

Objective function can be 
written as

where 

Belief state/posterior 
distribution over tasks

marginal 
distribution of the 
trajectory 

posterior 
expected reward 
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Proof to facilitate off-policy learning
(i.e meta-RL POMDP belief state is independent of the policy given the trajectory)

Since policy is 
independent 
of task

Given trajectory, task posterior is independent of policy that generated it



Approach : Learning belief network

• In general, it is difficult to learn belief representation of POMDPs

Similar in purpose as using expert trajectories, natural 
language instructions or designed curricula to speed up 
learning

Solution : Use the privileged 
information given as part of the 
meta RL problem



Approach : Learning belief network

• In general, it is difficult to learn belief representation of POMDPs

• Different types of task information are used with varying levels of 
privilege

Similar in purpose as using expert trajectories, natural 
language instructions or designed curricula to speed up 
learning

Solution : Use the privileged 
information given as part of the 
meta RL problem

Predict true task 
information

Predict action chosen 
by expert trained only 
on that task

Predict index of 
task 

Predict task embedding if 
available 

or 



Approach : Learning belief network
• We need to train belief module 

• Although, we don’t know the posterior distribution we can still get 
samples in our meta-RL setting and since belief state is independent of 
policy given the trajectory so is the task information. It can be trained 
with off-policy data

Minimize auxiliary 
log loss

Posterior distribution of task 
information given the trajectory

Minimizing auxiliary log loss is 
equivalent to minimizing

Note: This is backward KL which is different than the one used in variational inference



Approach: Architectures and Algorithms 

Baseline architecture

The paper proposes the use of 
entropy-regularised (distributed) 
SVG(0) for off-policy learning and the 
use of PPO for on-policy version for all 
different architectures used



Approach: Architectures and Algorithms 

The proposed belief network 
architecture



Approach: Architectures and Algorithms 

Alternate auxiliary head agent, 
whereby the auxiliary loss directly 
shapes the representations learnt

(AuxHead)



Belief network loss (with IB)



Belief network loss (with IB)

Critic network loss (with IB)



Belief network loss (with IB)

Critic network loss (with IB)

Policy network loss (with IB and entropy 
regularization)



Experimental Results Off-policy and on-policy learning

Multi Arm bandit : 20 arms and 
horizon 100

Semicircle: Reach a target on 
semicircle

For semicircle task where 
the comparison was done, 
off policy SVG(0) performs 
better than PPO



Experimental Results
Effect of Information bottleneck

For semicircle task where 
the comparison was done, 
off policy SVG(0) performs 
better than PPO

Increasing the 
regularization 
strength of IB 
decreases the 
generalization gap, 
and it increases the 
sample efficiency of 
the agent



Experimental Results
Role of supervision

For Cheetah (simulated 
cheetah has to run at a 
particular speed), The use 
of supervision proved to 
be beneficial

For semi-circle ball, The 
use of supervision proved 
to be beneficial but not 
very significant



Experimental Results

Complex continuous control tasks

Results for NumPad, a complex continuous control task with sparse rewards and requires long 
term memory in order to solve with each task as a POMDP 



Experimental Results
Behavior Analysis

The likelihood that the agent assigns to the true task 
sequence increases rapidly with each new tile in the 
sequence that is discovered in NumPad environment



Experimental Results
Behavior Analysis

Hinton diagrams visualizing beliefs about a 4 digit 
sequence. Each row shows the marginal probabilities 
for each digit. We visualize these marginals at times 
(columns) in an episode just before the agent discovers 
a new digit in the unknown task sequence (the last one 
is after discovering all digits). The belief of this agent 
reflects the contiguous structure of the allowed 
sequences: for example, in 3rd column, knowing that 
the first tile is in the lower left corner (1st row) and the 
second is at the center on the bottom (2nd row) 
makesthe agent infer that the third tile (3rd row) is one 
of the tiles which neighbor these two 



Experimental Results
Behavior Analysis

This figure shows comparison to PEARL that uses the more 
heuristic suboptimal “Thompson Sampling” search strategy. 
The Belief agent adapts much faster. The reason is depicted 
below



Experimental Results
Generalisation across tasks

Training vs validation performance on the multi-arm bandit environment



Experimental Results
Generalisation across tasks

Dependance of generalisation gap on number of tasks on Quadraped Semi-Circle environment



Experimental Results
Generalisation across tasks

Dependance of generalisation gap on training set size in Numpad environment
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Discussion of results

• Privileged information that is available in meta-RL can boost 
performance of both on-policy and off-policy meta-RL algorithms

• The belief state can be estimated from off-policy data and thus the 
module can be combined with efficient off-policy algorithms

• IB regularization helps prevent overfitting and leads to more 
efficient off-policy learning

• Natural structured information in the task(eg instruction or goal 
location) is more helpful than unstructured information like task ID



Critique / Limitations / Open Issues 

• Justification for the choice of off-policy algorithm used : (distributed 
SVG(0)). Why not other off-policy algorithms like SAC given its 
benefits and use in other algorithms like PEARL?

• Need for more comparison with other meta-RL algorithms like 
PEARL on other environments as well.



Critique / Limitations / Open Issues 

Most of the experiments 
were under this regime 

Need for more experiments 
in this regime

Fig adapted from http://web.stanford.edu/class/cs330/slides/Exploration%20in%20Meta-RL.pdf

http://web.stanford.edu/class/cs330/slides/Exploration%20in%20Meta-RL.pdf


Critique / Limitations / Open Issues 

• Many real-world tasks go beyond easy tasks controlled by single 
variable(like goal location,velocity,etc). For example, opening a 
drawer requires the ability to reach and pull which are 2 separate 
independent tasks (multi-modal task distributions) - Ren et al 2019.

Can the paper mentioned in the framework work in these settings?

• According to Wang et al 2020, the framework ignores the role of 
exploration in task inference  

https://skillsworkshop.ai/uploads/1/2/1/5/121527312/meta-rl.pdf
https://arxiv.org/pdf/2003.01373.pdf


Contributions (Recap)

-  The paper aims at taking advantage of privileged information in 
meta-RL to boost performance of meta-RL algorithms

- The framework in the paper allows for efficient training using 
off-policy data

-  The paper demonstrates experimentally the ability to solve complex 
continuous control tasks with sparse reward and requiring long term 
memory


