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Motivation: Temporal abstraction

* Consider an activity such as cooking
oHigh-level: Choose a recipe, make grocery List
oMedium-level: get a pot, put ingredients in the & A
Pot, stir until smooth

oLow-level: wrist and arm movement, muscle

Contraction

* All have to be seamlessly integrated.



Contributions

* Temporal abstraction within the framework of RL by introducing
options.

* Applying results from theory of SMDPs for planning and Learning in
the context of options.

* Changing and learning option’s internal structure.
o Interrupting options
o Sub goals
o Intra-option learning



Background: MDP

MDP consists of:
e A set of actions

e A set of states
* Transition dynamics: pgsr = Pr{s;y1 =5'|sy = s,a; = aj

* Expected reward: 1t = E{r;.{|S; = s,a; = a}



Background: MDP
* Policy: m: SXA = [0,1]

* VT(s) = E{resr + V7t4p +V?1ea3 + o0 |5y = 5,1}
= Yaea, (s, A" +y X pogr VT (s1)]

* V*(s) = maXV”(S) = m?qx[rs + ¥ D Dot V(8]



Background: Semi-MDP

Time —

MDP Discrete time
State .
Homogeneous discount
Continuous time
SMDP Discrete events
Interval-dependent discount

Discrete time

Options - /\ /\/ _ Overlaid discrete events
over MDP W, Interval-dependent discount



Options

* Generalize actions to include temporally extended courses of actions.

* An option (I, T, ) has three components:
oAn initiationset I © §
oA terminations condition $: S — [0,1]
oA policy m: SX A — [0,1]

* If the option (I, , B) is taken at s € I, then actions are selected
according to  until the option terminates stochastically according to

L.



Options: Example

* Open-the-door
 [: all states in which a closed door is within reach
* 11: pre-defined controller for reaching, grasping, and turning the door knob
* [: terminate when the door is open




Option: more definitions and details

* Viewing simple actions as single-step options
* Composing options
* Policies over options: u: Sx0 — [0,1]

e Theorem 1. (MDP+ options=SMDP). For any MDP, and any set of
options defined on that MDP, the decision process that only selects
among those options, executing each to the termination, is an SMDP.



Option models

* Rewards:
R = E{rpq4q +¥Teqn + -+ Vk_lrk+t‘
O is initiated in state s at time t and last k steps }

* Dynamics:

P‘%—Zy p(s’, k)



Rewriting Bellman Equations with Options

VE(S) = E{rpe1 + VTesp + o+ ¥ g +75 V”(5t+k)‘€(.u; s,t)}
(k is the duration of the first option selected by u)

= > (s, 0l Zpssfvws )

0€0;

V*(s) = max[‘rs + Do pSS/V (s))]

0€0,
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Primitive
options
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Options value learning

 State s, initiate option o, execute until termination
* Observe termination state s’, number of steps k, discounted reward r

Q(s,0) = Q(s,0) + a(r +y* max Q(s’,0") = Q(s,0))

Goal
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Between MDPs and semi-MDPs

Open up the black-box when
Option is Markov!

> Action | Action | Action

1. Interrupting options
2. Intra-option model/ value learning
3. Sub goals




1.Interrupting options

* We don’t have to follow options until termination, we can re-evaluate
our commitment at each step.

* If the value of continuing option o, Q (s, 0)is less than the value of
selecting a new option V¥ (s) = X, u(s, q)Q* (s, q), then switch.

* Theorem 2. policy u' is the interrupted policy of u. Then:
. Foralls €S: V“’(S) > VH(s)
Il. If from state s € §, there is a non zero probability of
encountering an interrupted history, then V“’(S) > VH(s)



Example
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2.Intra-option algorithms

* Learning about one option at a time is very inefficient.
* Instead, learn all options consistent with the behavior.

* Update every Markov option o whose policy could have selected a;
according to the same distribution (s, . ).

Q(s¢, 0) « Q(s¢,0) + O‘[("’t+1‘|‘VU(51:+1» 0)) — Q(s¢,0)]
* Where
U(s,0) = (1 - B())Q(s,0) + B(s) max (s, 0"

Is an estimate of the value of state-option pair (s,0) upon arrival in state
S.



2.Intra-option algorithms

* Theorem 3 (Convergence of intra-option Q-learning). For any set of
Markov options, O, with deterministic policies, one-step intra-option
Q-learning converges with probability 1 to the optimal Q-values, for
every option regardless of what options are executed during learning,
provided that every action gets executed in every state infinitely often.




* Proof.

Q(s,0) « Q(s,0) + a|(r' + yU(s',0)) — Q(s,0)]
We prove that the operator E[r’' + yU(s’, 0)] is a contraction.

E[r +yU(s',0)] = Q*(s,0)] = [ +y2pssfu<s 0) = Q'(s,0)|

= |rd +y2pSS,U(S 0) —r& +yZpSS,U (s’,0)| <
13 P11 = BD)(Q(s'10) — 0°(5'0)) + B imax Q') — max @° (5", 0] | <
ZpSS, ma 10Gs",0") = Q*(s", 0" =

II II

y max |Q(SH OII) _ (S”, O”)l

II OII



Theorem 1 A random iterative process Apy1(2) = (1—an(2))An(z)+5n(2)Fr(z)
converges to zero w.p.1 under the following assumptions:

1) The state space is finite.

2) T, an(z) = 00, T, a2(2) < 00, 5, falz) = 00, T, f(z) < oo, and
E{B.(2)|P.} < E{an(2)|P,} uniformly w.p.1.

3) | E{Fa(2)|Pa} llw< 7 || An [lw, wherey € (0,1).
4) Var{F,(2)|P.} < C(1+ || An ||w)?, where C is some constant.



3.Subgoals for learning options

* It is natural to think of options as achieving subgoals of some kind,
and to adapt each option’s policy to better achieve its subgoal.

* A simple way to formulate a subgoal for an option is to assign a
terminal subgoal value, g(s), to each state.

* For example, to learn a hallway option in the rooms task, the target
hallway might be assigned a subgoal value of +1, while other get the
subgoal value of zero.

* Learn policies using subgoals independently using an off-policy
learning method such as Q-learning .



3.Subgoals for learning options
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Contributions (Recap)

* Problem: enable temporally abstract knowledge and action to be
included in the reinforcement learning

* Introduced options, temporally extended courses of actions.
* Extended theory of SMDPs to the context of options.

* Introduction of intra-option learning algorithm that are able to learn
about options from fragment of execution.

* Propose notion of subgoals that can be used to improve option
themselves.



Limitations

* Require to formalize subgoals/options.

* Might necessitate a small state-action space.

* The integration with state abstraction remain incompletely
understood.




Questions

1. Why should we use off-policy learning methods for learning the
option policies using subgoals?

2. What cases can you think of which intra value learning improve
upon the original option value learning?

3. Is planning over options always going to speed up the planning?




