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Why Hierarchical RL?

RLis hard

Sparse reward
Long time-horizon

https://www.retrogames.cz/play_124-Atari2600.php?language=EN

More “human-like” approach to decision making



Human-like decision making

When we type on a computer keyboard, we just
thinking about the words we want to write. We
don’t think about each our fingers and muscles

individually.

We make hierarchical abstractions

Could this work for RL too?
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https://en.wikipedia.org/wiki/Feudalism
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Governance system in Europe between 9-15th
centuries

Feudalism?
Top-down



Feudal Reinforcement Learning (Dayan & Hinton 93’)

- Only top Manager sees the environment
reward

- Managers rewards and set goals for

Rewards
level below
,/ ) Goals, Rewards
ENVIRONMENT
- Managers are not aware of
k ) Goals, Rewards
what happens at other level |
Actions



FeUdal Networks

Manager

Lower temporal resolution
Rewards

- Sets directional goals g MANAGER g
- Rewarded by env. //

Worker ENVIRONMENT | Goals, Rewards
Higher temporal resolution \
Rewarded by the Manager -

: : . ~ WORKER g
Produces actions in env. Actions

No gradient are propagated between the Manager and the Worker



Directional vs Absolute Goals

An absolute goal would be to reach a particular state
Ex: you have an address to reach

A direction goal would be to go towards a particular state
Ex: you have a direction to follow



Model Architecture Details
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How to train this model?

- Could use TD-learning but then g would not have any semantic
meaning
. Approximate transition policy gradient

Manager Worker
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Manager RNN: Dilated LSTM

e Memories over longer periods
e Outputs are summed over c steps
® Performs better

Output Output
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Sub-policies inspection

Example frame LSTM Full FuN

sub-policy 1 sub-policy 2 sub-policy 3 sub-policy 4




Sub-policies inspection




Is the Dilated LSTM important?
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Influence of a
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® They changed the number of action repeat
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Did it solve Montezuma’s Revenge?

start

Goal count
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Time step 180
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Sum up of the results

- Using directional goals works well

. Better long-term credit assignment

. Better transfer learning

- Manager’s goals corresponds to different sub-policies

- Dilated LSTM is essential for good performance

. Meticulous ablation studies - proving their points with evidence (vs
claiming SOTA)



FeUdal Network vs Options Framework

e Only one Worker vs many options
o Memory efficient
o Cheaper computationally

e Meaningful goals producing different sub-policies

e “Standard” MDP



Contributions (recap)

- Differentiable model that implements Feudal RL
- Approximate transition policy gradient for training the Manager
- Directional goals instead of absolute

. Dilated LSTM



Has this method inspired others?
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Open challenges

- Montezuma’s revenge remains a challenge
- Maybe using deeper hierarchy and different

time scale?
. Transfer learning from an environment to

another?




