FeUdal Networks for Hierarchical Reinforcement Learning

Alexander Sasha Vezhnevets, Simon Osindero, Tom Schaul, Nicolas Heess, Max Jaderberg, David Silver, Koray Kavukcuoglu

Topic: Hierarchical RL
Presenter: Théophile Gaudin
Why Hierarchical RL?

- RL is hard
 - Sparse reward
 - Long time-horizon

- More “human-like” approach to decision making

Human-like decision making

When we type on a computer keyboard, we just thinking **about the words we want to write**. We don’t think about **each our fingers and muscles individually**.

We make hierarchical abstractions

Could this work for RL too?
Feudalism?

Governance system in Europe between 9-15th centuries

Top-down “management”

https://en.wikipedia.org/wiki/Feudalism
Feudal Reinforcement Learning (Dayan & Hinton 93’)

- Only top Manager sees the environment reward
- Managers rewards and set goals for level below
- Managers are not aware of what happens at other level
FeUdal Networks

Manager

- Lower temporal resolution
- Sets **directional** goals
- Rewarded by env.

Worker

- Higher temporal resolution
- Rewarded by the Manager
- Produces actions in env.

No gradient are propagated between the Manager and the Worker
Directional vs Absolute Goals

An absolute goal would be **to reach** a particular state
 Ex: you have an address to reach

A direction goal would be **to go towards** a particular state
 Ex: you have a direction to follow
Model Architecture Details

\[z_t = f_{\text{percept}}(x_t) \]
\[s_t = f_{Mspace}(z_t) \]
\[h_t^M, \hat{g}_t = f_{Mrnn}(s_t, h_{t-1}^M); g_t = \hat{g}_t/||\hat{g}_t||; \]
\[w_t = \phi(\sum_{i=t-c} g_i) \]
\[h_t^W, U_t = f_{Wrrn}(z_t, h_{t-1}^W) \]
\[\pi_t = \text{SoftMax}(U_tw_t) \]
How to train this model?

- Could use TD-learning but then g_t would not have any semantic meaning
- Approximate transition policy gradient

Manager

$$\nabla g_t = A_t^M \nabla_\theta d_{\cos}(s_t+c - s_t, g_t(\theta)),$$

Direction in the latent space

where $A_t^M = R_t - V_t^M(x_t, \theta)$

Worker

$$r_t^I = 1/c \sum_{i=1}^{c} d_{\cos}(s_t - s_{t-i}, g_{t-i})$$

$$\nabla \pi_t = A_t^D \nabla_\theta \log \pi(a_t|x_t; \theta)$$

$$A_t^D = (R_t + \alpha R_t^I - V_t^D(x_t; \theta))$$
Manager RNN: Dilated LSTM

- Memories over longer periods
- Outputs are summed over c steps
- Performs better

“Standard” RNN

Dilated RNN
Results on Atari games
Sub-policies inspection

Example frame LSTM Full FuN

sub-policy 1 sub-policy 2 sub-policy 3 sub-policy 4
Sub-policies inspection

(b)
Is the Dilated LSTM important?
Influence of α

$$R_t + \alpha R_t^I$$
Transfer Learning

- They changed the number of action repeat
Did it solve Montezuma’s Revenge?
Sum up of the results

- Using directional goals works well
- Better long-term credit assignment
- Better transfer learning
- Manager’s goals corresponds to different sub-policies
- Dilated LSTM is essential for good performance
- Meticulous ablation studies - proving their points with evidence (vs claiming SOTA)
FeUdal Network vs Options Framework

- Only one Worker vs many options
 - Memory efficient
 - Cheaper computationally

- Meaningful goals producing different sub-policies

- “Standard” MDP
Contributions (recap)

- Differentiable model that implements Feudal RL
- *Approximate transition policy gradient* for training the Manager
- Directional goals instead of absolute
- Dilated LSTM
Has this method inspired others?

IRIS: Implicit Reinforcement without Interaction at Scale

Demonstrations

Low-Level Goal-Conditioned Imitation Controller
\[a_{t:t+T} = \pi_{im}(s_{t:t+T} \mid s_g) \]

High-Level Goal Selection Mechanism
\[G = \{ s_g^i \sim D_g(s_t) \}_{i=1}^{n_g} \]
\[s_g^* = \max_{s_g \in G} V(s_g) \]

Imitate \(T \)-length sequence with \(s_g = s_{t+T} \)

Goal Proposals
Select goal based on value

https://sites.google.com/stanford.edu/iris/

Learning Latent Plans from Play
https://learning-from-play.github.io/
Open challenges

• Montezuma’s revenge remains a challenge
• Maybe using deeper hierarchy and different time scale?
• Transfer learning from an environment to another?