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Bayesian RL: What

- Leverage Bayesian Information in RL problem
Dynamics
Solution space (Policy Class)

- Prior comes from System Designer



Bayesian RL: Why

- Exploration-Exploitation Trade-off

- Posterior: current representation of world
Max Gain wrt Current World Belief

- Regularization

- Prior over Value, Policy (params or class) or Model results in regularization/finite sample estimation.
- Handle Parametric Uncertainty

- Sampling based methods, aka frequentist, are computationally intractable or very conservative.



Bayesian RL: Challenges

- Selection of the correct Representation for Prior
- How to know ahead of time?
- Why s that knowledge not biased?

- Decision-making process over the information state
- Dynamic Programming over large state-action spaces was hard as it is!
- Doing this over distributions of states (beliefs) and distributions over latent dynamics model
Computationally much harder!
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Preliminaries: POMDP

Model 4 (Partially Observable Markov Decision Process) De-
fine a POMDP M to be a tuple (S, A4, O, P,Q, Py, q) where

e S is the set of states,

e A is the set of actions,

e (0 is the set of observations,

e P(:|s,a) € P(S) is the probability distribution over next states, con-
ditioned on action a being taken in state s,

e Q(-|s,a) € P(O) is the probability distribution over possible obser-
vations, conditioned on action a being taken to reach state s where the
observation is perceived,

e Py € P(S) is the probability distribution according to which the ini-
tial state is selected,

e R(s,a) ~ q(-|s,a) € P(R) is a random variable representing the re-
ward obtained when action a is taken in state s.
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Multi-armed Bandits (MAB)

Model 1 (Stochastic K-Armed Bandit) Define a K-MAB to be
a tuple (A, Y, P,r) where

e A is the set of actions (arms), and |A| = K,

e ) is the set of possible outcomes,

e P(-la) € P(Y) is the outcome probability, conditioned on action
a € A being taken,

e 7(Y) € R represents the reward obtained when outcome Y € Y is
observed.



Bayesian MAB

- In MAB model, only unknown is outcome probability P(*|a)

- Use Bayesian inference to learn the outcome probability from outcomes observed

a)

- Parameterize outcome

P (-

- Model our uncertainty about 9



Bayesian MAB - Bernoulli with Beta Prior

0= (6,...,0:)
r(Y)=Y

Y (a) ~ Bernoullil6,
0, ~ Beta(ay,, Bq)

0,y ~ Beta(a, + vy, Ba + Y)



Bayesian MAB - Policy Selection

- We canrepresent our uncertainty about 8 with posterior
- How to utilize this representation to select an adequate policy

- Want policy which minimizes regret
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UCB

- Employs optimistic policy to reduce chance of overlooking the best arm

- Starts by playing each arm once

- Attimestept, plays arm a that maximizes the following (<r_a>is mean reward for arm a, t_a is
number of times arm a has been played so far)




Bayes - UCB

Extend UCB to Bayesian setting
- Keep posterior over expected reward of each arm
- Ateachstep, choose the arm with the maximal posterior (1 - 8_t)-quantile, where 8_t is of order 1/t

- Using upper quantile instead of posterior mean serves the role of optimism, in the spirit of original
UCB



Thompson Sampling

Ppost Is posterior over 9

A A
- Sample a parameter 0 from posterior, and select optimal action with respect to 9

- Amounts to matching action selection probability to the posterior probability of each action being
optimal



Thompson Sampling

Algorithm 1 Thompson Sampling

1:

TS(Pprior)
® Pyrior prior distribution over 6
Ppost = Pprior
for t=1,2,... do
Sample @ from Pt
Play arm a; = arg max,¢ 4 Ey,\,pé(.|a) [ (y)]
Observe outcome Y; and update Ppost
end for




Thompson Sampling - Beta Bernoulli
Algorithm 1 Thompson Sampling
1: TS<Pprior)
e P, .ior prior distribution over 6 NN 3
p 6 =16,,...,6

2: Ppost = Pprior
3: for t=1,2,... do ‘ ;
4:  Sample 0 from Ppog Y(a) ~ Bernoulli|0,]
5:  Play arm a; = arg max,¢ 4 Eywpé(,m) r(y)] ——
6:  Observe outcome Y; and update Ppost
l 7: end for
argmadac A (EyNBern[H;I] [y]’ Ewaern[H;z] [y]’ T EyNBern[O(:k] [y]]) -

argmaxgc s (0q,,604,,--,604,)
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Sampling the Beta pdf of each arm v - )
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Playing arm 3 ... 1 and receive a reward

Arm played attimet =1 is arm 3
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Update the Beta pdf of arm 3 (rime - 2)

Betapdfofarm3g(a =1 1=2)
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Slides from https://www.youtube.com/watch?v=ghgAYfPv7mQ



https://www.youtube.com/watch?v=qhqAYfPv7mQ
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Model-based Bayesian Reinforcement Learning

Represent out uncertainty in model parameters of MDP

Can be thought of as a POMDP where parameters represent unobservable states

Keep joint posterior over model parameters and physical state

Derive optimal policy with respect to this posterior



Bayes-Adaptive MDP

- Assume discrete action/state sets
- Transition probabilities consist of multinomial distributions

Represent our uncertainty with respect to the true parameters of the multinomial distribution
using a Dirichlet distribution

(P1,.--spk) ~ Dir(¢a, ..., ox)



Bayes-Adaptive MDP

Model 6 (Bayes-Adaptive MDP) Define a Bayes-Adaptive MDP
M to be a tuple (S, A, P', P}, R') where

e & is the set of hyper-states, S x @,

e A is the set of actions,

e P'(:s,¢,a) is the transition function between hyper-states, condi-
tioned on action a being taken in hyper-state (s, ¢),

e P} € P(S x ®) combines the initial distribution over physical states,
with the prior over transition functions ¢q,

e R'(s,¢,a) = R(s,a) represents the reward obtained when action a is
taken in state s.



BAMDP Transition Model

- The transition model of the BAMDP captures transitions between hyper-states.
- Bychainrule:

Pr(S,? ¢, 87 a? ¢) — Pr(S,|S7 a’? ¢) Pr(gbl‘S? a? 8,7 QS)




BAMDP Transition Model

- The transition model of the BAMDP captures transitions between hyper-states.

Pr(s’, ¢ s,'a, ¢) = Pr(d|s,a, o) Pr(¢'|s,a, s, o)

- First term: taking expectation over all possible transition functions
/ - _ _
Pr(S |S, a, QS) — fp Pr('sl S, a, ¢7p)b(p)dp e
¢S,CL,S,

= ZS//ES ¢Saa73//




BAMDP Transition Model

Pr(s', ¢'|s,a, ¢) = Pr(s'|s,a,¢) Pr(¢|s,a,s', §)

- Second Term: update of the posterior @ to ¢'is deterministic

Pr(¢'|s,a,s',¢)is 1if ¢ , = @54+ + 1, and

s,a,S

0, otherwise.



BAMDP Transition Model
Pr(s’, ¢'[s, a,p) = Pr(s'|s,a, d) Pr(¢']s,a,s', ¢)
¢s,a,s’

N Z S ¢ ]I(¢‘/97a73/ — ¢S>a78/ T 1)
8,/6 870’78”




BAMDP - Number of States

- Initially (at t = 0), there are only |S| stas, one per real MDP, state (we assume a single prior @O is
specified).

- Assuming a fully connected state space in the underlying MDP (i.e.,P (s'|s,a) > 0, Vs, a), thenatt =
1there are already |S|x|S| states, since ¢ — @' can increment the count of any one of its ||
components. So at horizon t, there are |S|*t reachable states in the BAMDP.

- There are clear computational challenges in computing an optimal policy over all such beliefs.



BAMDP - Value Function

Any policy which maximizes this expression is called Bayes Optimal

V*(S7¢) — max R/(87 ¢7 +,y Z Pl(8/7¢,|87 ¢7 a)v*(sl7¢l)}

acA s PES

= max |R(s,a) + 7 Z
acA é 65 s'"eS ¢s s”




Bayes Optimal Planning

- Planning algorithms which seek a Bayes optimal policy are typically based on heuristics and/or
approximations due to complexity noted above



Planning Algorithms Seeking Bayes Optimality

- Offline value approximation
- Compute policy apriori for any possible state and posterior
- Compute action selection strategy to optimize expected return over hyper-states of the BAMDP
- Intractable in most domains, these methods devise approximate algorithms which leverage structural
constraints

- Online near myopic value approximation
- Inpractice may be fewer than |S|*t states; some trajectories will not be observed.
- Interleave planning and execution on a step-by-step basis

- Methods with exploration bonus to achieve PAC Guarantees
- Select actions such as to incur only a small loss compared to the optimal Bayesian policy
- Typically employ Optimism in the Face of Uncertainty; when in doubt, an agent should act according to an
optimistic model of the MDP
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Online - Bayesian Dynamic Programming

- Example of online near-myopic value
approximation

- Generalizationof TS

- Get estimate of Q function we would get if
using transition model Pr(theta) directly

- Convergence to optimal policy is
achievable

- Recent work has provided the first
Bayesian regret bounds




Online - Tree Search Approximation - Forward
Search

Select actions using a more complete characterization of the model uncertainty

- Perform forward search in the space of hyper-states

- Consider current hyper-state, build fixed-depth forward search tree containing all hyper-states
reachable within some fixe planning horizon, denoted d

- Usedynamic programming to approximate expected return of possible actions at the root of the
hyper-state

- Action with highest return is executed, and then forward search is conducted on the next
hyper-state



Online - Tree Search Approximation - Forward
Search

- Thetop node contains
the initial state 1 and
the prior over the
model ¢q

- After the first action,
the agent can end up
in either state 1 or
state 2, and updates
its posterior
accordingly




Online - Tree Search Approximation - Forward
Search

- The main limitation of this approach is the fact that for most domains, a full forward search (i.e.,
without pruning of the search tree) can only be achieved over a very short decision horizon

- the number of nodes explored is O(|S|d)

- Alsorequires specifying default value function at leaf nodes (since using dynamic programing back
ups)



Online - Bayesian Sparse Sampling

Estimates the optimal value function of a BAMDP (Equation 4.3) using Monte-Carlo sampling

- Instead of looking at all actions at each level of tree, actions are sampled according to their
likelihood of being optimal, according to their Q-value distributions (as defined by Dirichlet
posteriors)

- Next states are sampled according to the Dirichlet posterior on the model
- This approach requires repeatedly sampling from the posterior to find which action has the highest

Q-value at each state node in the tree. This can be very time consuming, and thus, so far the
approach has only been applied to small MDPs.
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Methods with exploration bonus to achieve
PAC Guarantees

- Select actions such as to incur only a small loss compared to the optimal Bayesian policy

- Typically employ Optimism in the Face of Uncertainty; when in doubt, an agent should act
according to an optimistic model of the MDP

- Shown to achieve bounded error in a polynomial number of steps using analysis from Probably
Approximately Correct (PAC) literature



BFS3: Bayesian Forward Search Sparse
Sampling

- Maintains both lower and upper bounds on the value of each state-action pair, and uses this
information to direct forward rollouts in the search tree

- Consider anodesinthe tree, then the next action is chosen greedily with respect to the
upper-bound U(s,a)

- Thenext state s'is selected to be the one with the largest difference between its lower and upper
bound (weighted by the number of times it was visited)



BFS3: Bayesian Forward Search Sparse
Sampling
Theorem [Asmuth, 2013]: With probability at least 1 - 8, the expected number of sub-g-Bayes-optimal

actions taken by BFS3 is at most BSA(S + 1)d/dt under assumptions on the accuracy of the prior and
optimism of the underlying FSSS procedure.
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Offline - Bayesian Exploration Exploitation
Tradeoff in LEarning (BEETLE)

Optimal value function for a finite-horizon POMDP can be shown to be piecewise-linear and
convex; can be represented by a finite set of linear segments &g, . .., Oy

The value of a given ai at a belief bt is evaluated as follows:

() = /S () bls)d

V5 (by) = maX/ch(s)bt(s)

a€l's



Offline - Bayesian Exploration Exploitation
Tradeoff in LEarning (BEETLE)

- Hyper-states (s, ¢) are sampled from random interactions with BAMDP model
- Anequivalent continuous POMDP is solved assuming b = (s, ¢) is a belief state in that POMDP

- The set of a-functions are constructed incrementally applying Bellman updates at the sampled
hyper states using standard point-based POMDP method



Offline - Bayesian Exploration Exploitation
Tradeoff in LEarning (BEETLE)

- The constructed a-functions can be shown to be multivariate polynomials

- The main computational challenge is that the number of terms in the polynomials increases
exponentially with the planning horizon

- Thekey to applyingitinlarger domains is to leverage knowledge about the structure of the domain
to limit the parameter inference to a few key parameters, or by using parameter tying (whereby a
subset of parameters are constrained to have the same posterior)
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Model-free Bayesian Reinforcement Learning



