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Abstract. Semantic segmentation of 3D meshes is an important prob-
lem for 3D scene understanding. In this paper we revisit the classic multi-
view representation of 3D meshes and study several techniques that make
them effective for 3D semantic segmentation of meshes. Given a 3D mesh
reconstructed from RGBD sensors, our method effectively chooses dif-

ferent virtual views of the 3D mesh and renders multiple 2D channels
for training an effective 2D semantic segmentation model. Features from
multiple per view predictions are finally fused on 3D mesh vertices to
predict mesh semantic segmentation labels. Using the large scale indoor
3D semantic segmentation benchmark of ScanNet, we show that our vir-
tual views enable more effective training of 2D semantic segmentation
networks than previous multiview approaches. When the 2D per pixel

yredictions are aggregated on 3D surfaces, our virtual multiview fusion . ) ) )
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method is able to achieve significantly better 3D semantic segmentation
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recent 3D convolution approaches.
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Motivation

3D Semantic Segmentation Applications:
Autonomous Driving

Robotics

Biomedical imaging
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Main Problem: 3D Semantic Segmentation

* Extract 3D geometry of a region of interest through segmentation
e Understand objects’ shape, category and position
e Difficulties in surface determination in the 3D

* Previous works:

1. Multi view labelling
2. Native 3D Convolution
3. Synthetic Data



General Background : ScanNet dataset

* Richly-annotated 3D Reconstructions of Indoor Scenes
* 1513 indoor scenes with 2.5 Million Views
e Contains 3d camera poses and extrinsics

* Volumetric and multi-view CNNSs for object classification on 3D data.
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Prior Works and Their Limits

* Multi-view labeling: Used 2D-3D projection. restricted by limited fields of
view, not scale invariant, lighting of certain views

* Native 3D Convolution : Point cloud or Sparse Voxel. Limited resolution
comparing to 2D

* Synthetic data: limited domain adaption.
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3DMV: Joint 3D-Multi-View Prediction for 3D
Semantic Scene Segmentation

e Same author of ScanNet Dataset
e Use Multi-view method
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3D Semantic Segmentation with Submanifold
Sparse Convolutional Networks

* Native 3D Convolutional Networks
e Submanifold sparse convolutional networks SSCN
* Efficiency on high-dimensional sparse input data
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Contributions

* Problem: 3D Semantic Segmentation
* STOA performance achieved with simpler classic models

* Key innovation: 4 steps in data augmentation including adding virtual
multi-view images

e Reopen the direction of Multi-view for future research




Problem Setting

* A new multi view-based approach for 3D Semantic segmentation
* Input data: 3D mesh from RGB-D camera

e Use synthetic images rendered from virtual views
 Complete further data augmentation

e Performance Metrics: 3D 10U (Intersection over Union)



Approach :Overview

Xception Network
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Approach : Step 1

* Virtual Multi-view synthesis
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Approach : Step 2

e Adding additional channels

RGB image Depth image Normal image Global coordinates
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Approach : Step 3

* Expanding higher field of view

* Achieve larger spatial context

Original view Virtual view Virtual view with high FOV
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Approach : Step 4

* View Sampling




Approach: Xception Network

e Use transfer learning from 2D CNN
e Leverage larger 2D dataset: ImageNet, COCO
* Depth wise Separable Convolutions
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Approach: 3D Fusion of 2D Features

* Project from 2D back to 3D
* Render depth channel on virtual views

* Project back to each virtual views according to depth.
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Method 13D mloU (val split) 3D mloU (test split)|

. PointNet [30] 53.5 55.7
Experimental Results @0 s !
PanopticFusion [24] - 52.9
PointConv [17] 61.0 66.6
st JointPoint Based [7] 69.2 63.4

e 15t place on ScanNet Val set SoatA ] : _
d KPConv [35] 69.2 68.4
e 2"% place on test set MinkowskiNet [7] 72.2 73.6.
PointASNL [11] 63.5 66.6
e Qualitative result: ) j 7o
Ours 76.4 74.6

Ground Truth




Discussion of Results : Ablation Study

SensorType Channels Intrinsics Extrinsics 3D mesh loU
Real RGB Original Original 60.1
Virtual RGB Original Original 63.2
Virtual RGB + Normal+ Coordinates Original Original 66.1
Virtual RGB + Normal+ Coordinates High FOV Original 67.9
Virtual RGB + Normal + Coordinates High FOV View sampling 701 (+10.1)




Limitations

e Require highly articulated feature engineering
* Scalability
 Computation cost on simulation instead of training

* Noise/distortion exist on virtual images




Contributions (Recap)

* Problem: 3D Semantic Segmentation
* STOA performance achieved with simpler classic models

* Key innovation: 4 steps in data augmentation including adding virtual
multi-view images

e Reopen the direction of Multi-view for future research




