CSC2457 3D & Geometric Deep Learning

Scene Representation Networks: Continuous 3D-Structure-Aware Neural Scene Representations Vincent Sitzmann, Michael Zollhöfer and Gordon Wetzstein

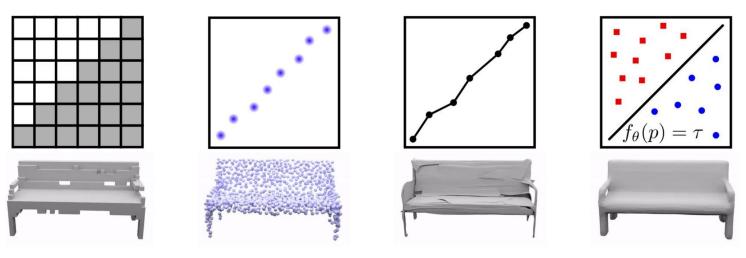
Feb 23rd

Presenter: Shayan Shekarforoush

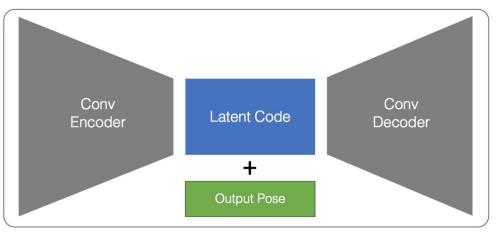
Instructor: Animesh Garg

Learning Scene Representation

• With 3D Bias:

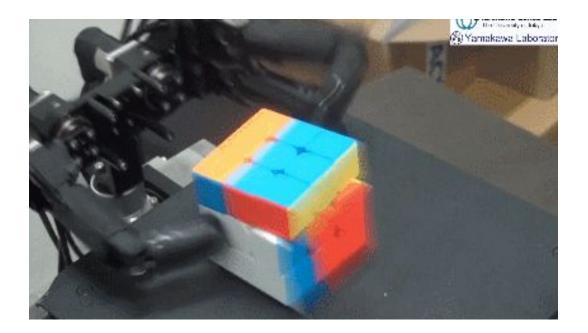


• Or not:



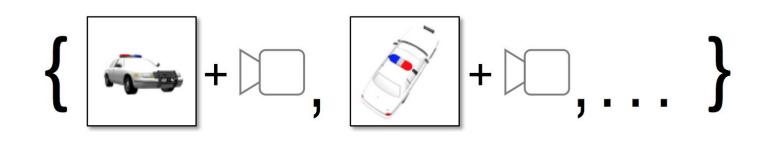
Applications

Downstream tasks



3D supervision

3D supervision

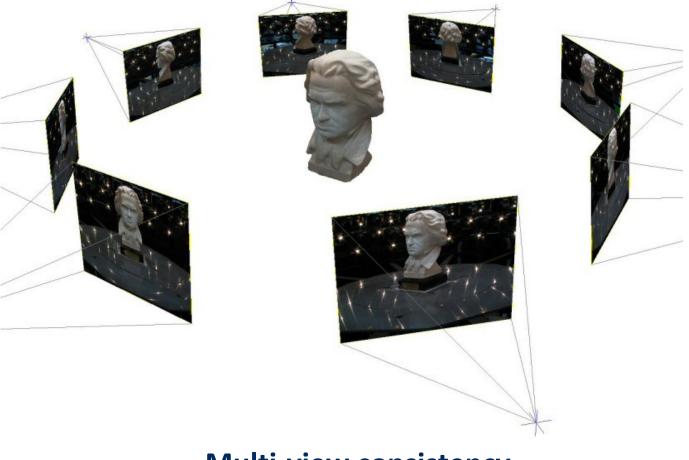


3D supervision

2D image + Camera pose

Geometry

Geometry + Appearance

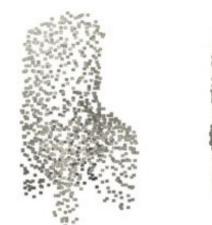


Multi-view consistency

Voxel resolutions

Voxel resolutions

Point cloud sparsity

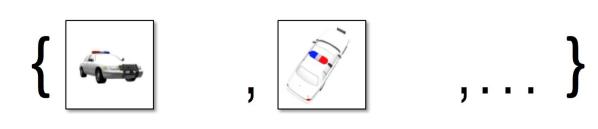


Contributions

- A continuous, 3D structure aware, neural scene representation encoding geometry and appearance a multi-view consistent manner.
 - Along with a Differentiable ray marching algorithm for rendering.
- End-to-end training without explicit 3D supervision.
- Generalizable to other geometry or appearance.
- Evaluation in:
 - Novel view synthesis.
 - Few-shot reconstruction.
 - ...

Problem Setting

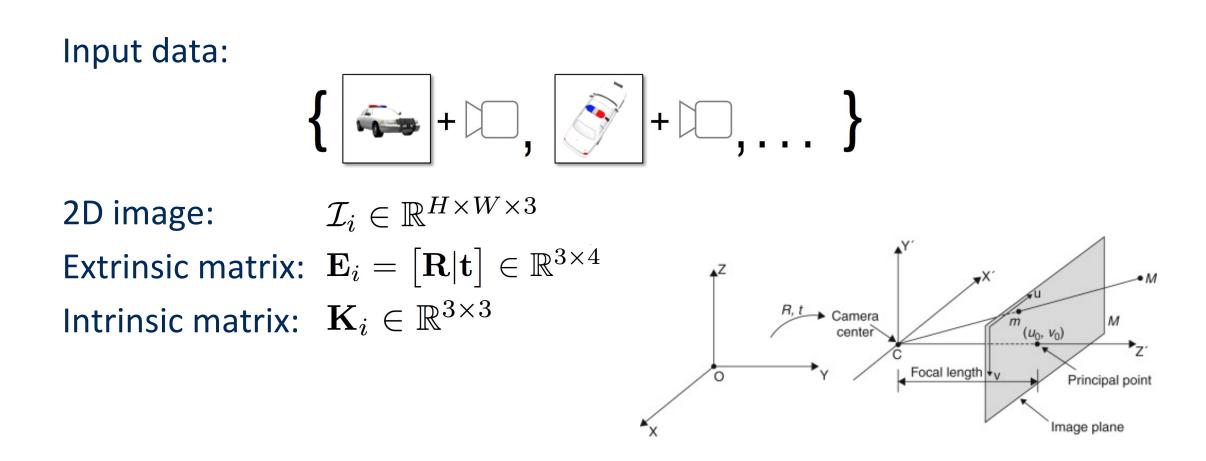
Input data:

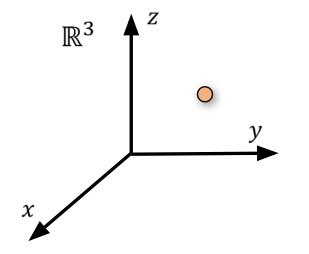


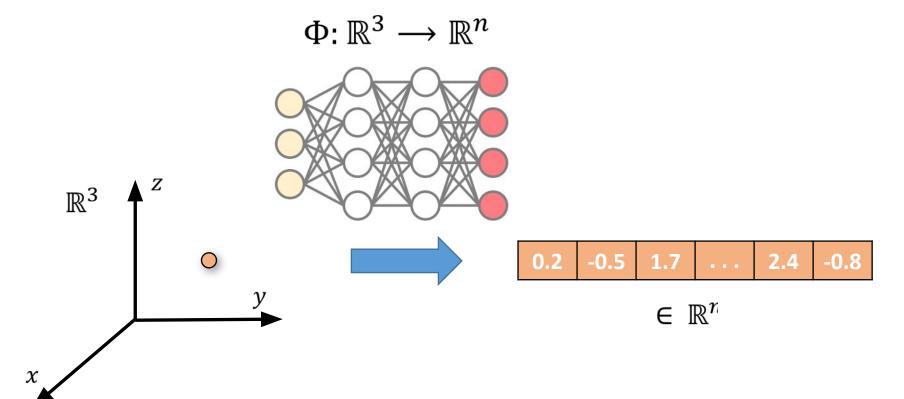
2D image:

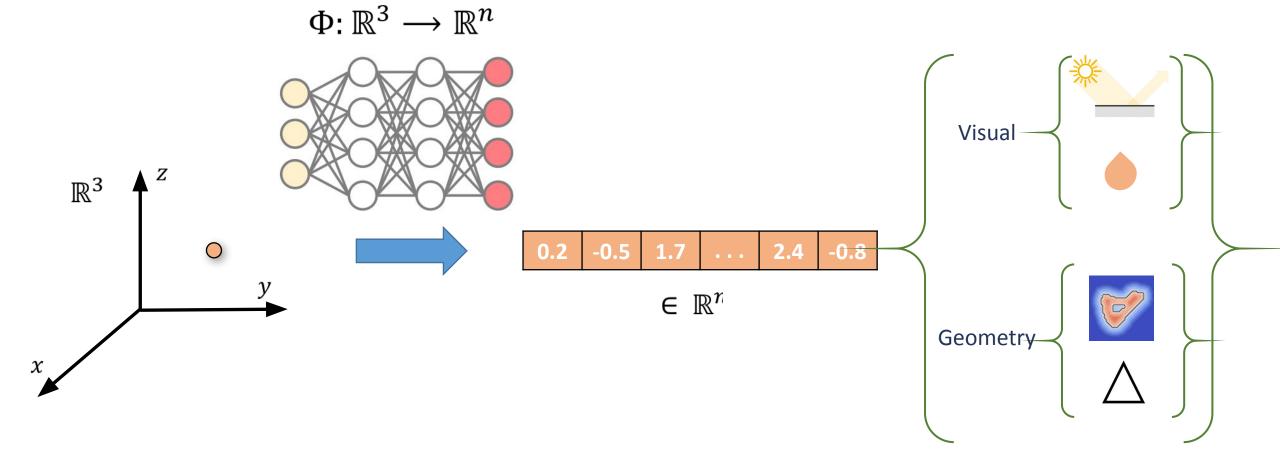
 $\mathcal{I}_i \in \mathbb{R}^{H \times W \times 3}$

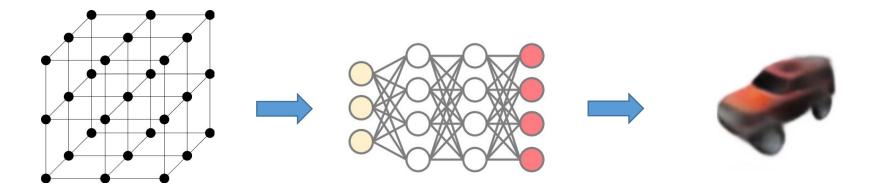
Problem Setting

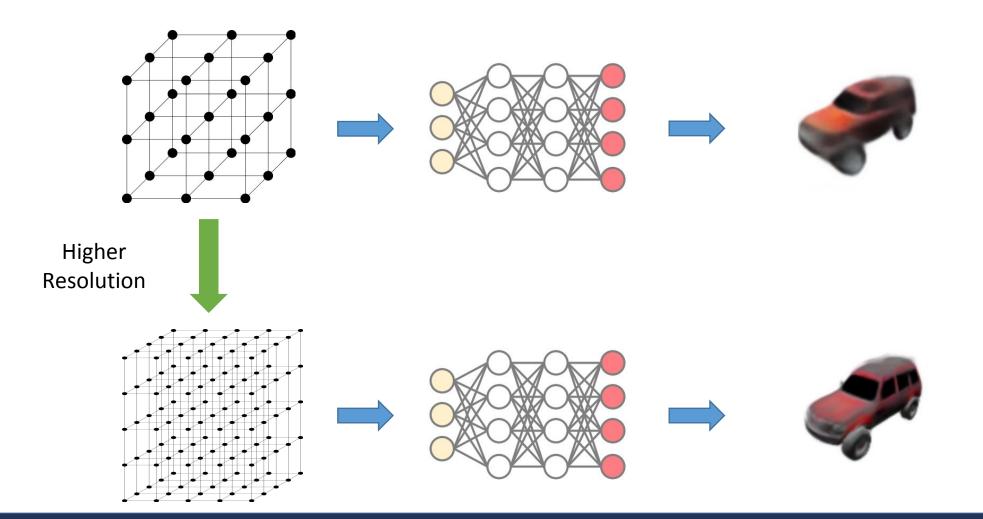






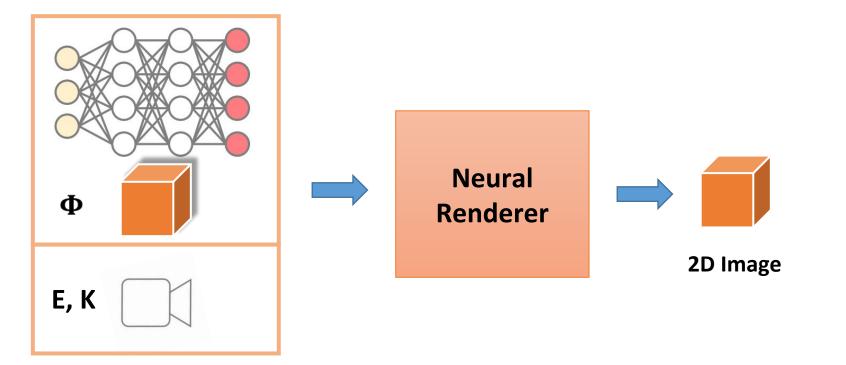






Neural Rendering

 $\Theta: \mathcal{X} \times \mathbb{R}^{3 \times 4} \times \mathbb{R}^{3 \times 3} \to \mathbb{R}^{H \times W \times 3}, \quad (\Phi, \mathbf{E}, \mathbf{K}) \mapsto \Theta(\Phi, \mathbf{E}, \mathbf{K}) = \mathcal{I}$



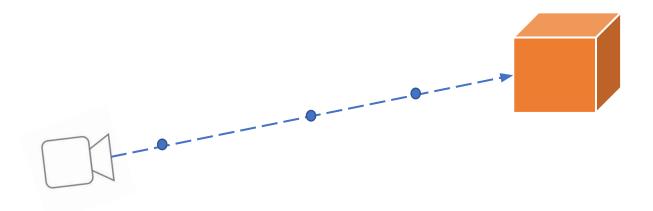
Neural Rendering

 $\Theta: \mathcal{X} \times \mathbb{R}^{3 \times 4} \times \mathbb{R}^{3 \times 3} \to \mathbb{R}^{H \times W \times 3}, \quad (\Phi, \mathbf{E}, \mathbf{K}) \mapsto \Theta(\Phi, \mathbf{E}, \mathbf{K}) = \mathcal{I}$

- Ray Marching
- Pixel Generator

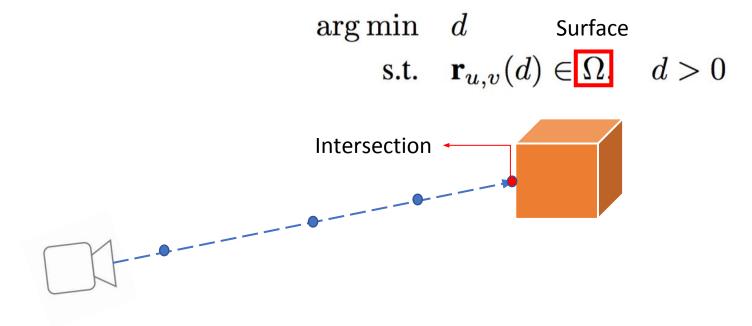
Parametrize ray marching out of pixel (u, v):

$$\mathbf{r}_{u,v}(d) = \mathbf{R}^T (\mathbf{K}^{-1} \left(egin{array}{c} u \ v \ d \end{array}
ight) - \mathbf{t})$$



Parametrize ray marching out of pixel (u, v): Intersection as optimization:

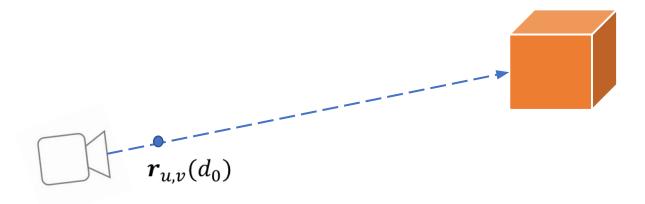
$$\mathbf{r}_{u,v}(d) = \mathbf{R}^T (\mathbf{K}^{-1} \begin{pmatrix} u \\ v \\ d \end{pmatrix} - \mathbf{t})$$



Parametrize ray marching out of pixel (u, v):

$$\mathbf{r}_{u,v}(d) = \mathbf{R}^T (\mathbf{K}^{-1} \left(egin{array}{c} u \ v \ d \end{array}
ight) - \mathbf{t})$$

1: function FINDINTERSECTION(
$$\Phi$$
, K, E, (u, v))
2: $d_0 \leftarrow 0.05$
3: $(\mathbf{h}_0, \mathbf{c}_0) \leftarrow (\mathbf{0}, \mathbf{0})$
4: for $i \leftarrow 0$ to max_iter do
5: $\mathbf{x}_i \leftarrow \mathbf{r}_{u,v}(d_i)$
6: $\mathbf{v}_i \leftarrow \Phi(\mathbf{x}_i)$
7: $(\delta, \mathbf{h}_{i+1}, \mathbf{c}_{i+1}) \leftarrow LSTM(\mathbf{v}, \mathbf{h}_i, \mathbf{c}_i)$
8: $d_{i+1} \leftarrow d_i + \delta$
9: return $\mathbf{r}_{u,v}(d_{max_iter})$



Parametrize ray marching out of pixel (u, v):

 $r_{u,v}(d_0)$

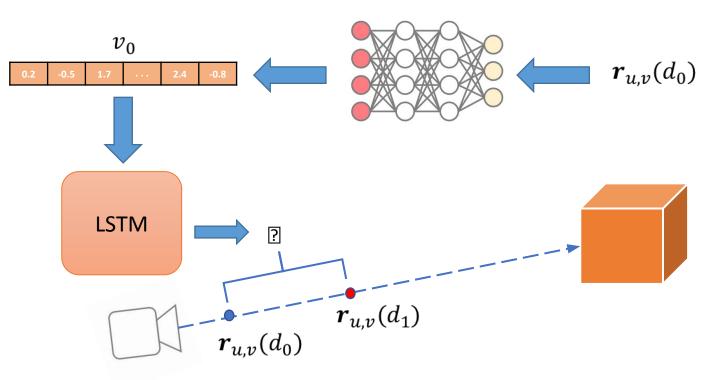
$$v_0$$

$$r_{u,v}(d_0)$$

$$\mathbf{r}_{u,v}(d) = \mathbf{R}^T (\mathbf{K}^{-1} \begin{pmatrix} u \\ v \\ d \end{pmatrix} - \mathbf{t})$$

1: function FINDINTERSECTION(
$$\Phi$$
, K, E, (u, v))
2: $d_0 \leftarrow 0.05$
3: $(\mathbf{h}_0, \mathbf{c}_0) \leftarrow (\mathbf{0}, \mathbf{0})$
4: for $i \leftarrow 0$ to max_iter do
5: $\mathbf{x}_i \leftarrow \mathbf{r}_{u,v}(d_i)$
6: $\mathbf{v}_i \leftarrow \Phi(\mathbf{x}_i)$
7: $(\delta, \mathbf{h}_{i+1}, \mathbf{c}_{i+1}) \leftarrow LSTM(\mathbf{v}, \mathbf{h}_i, \mathbf{c}_i)$
8: $d_{i+1} \leftarrow d_i + \delta$
9: return $\mathbf{r}_{u,v}(d_{max,iter})$

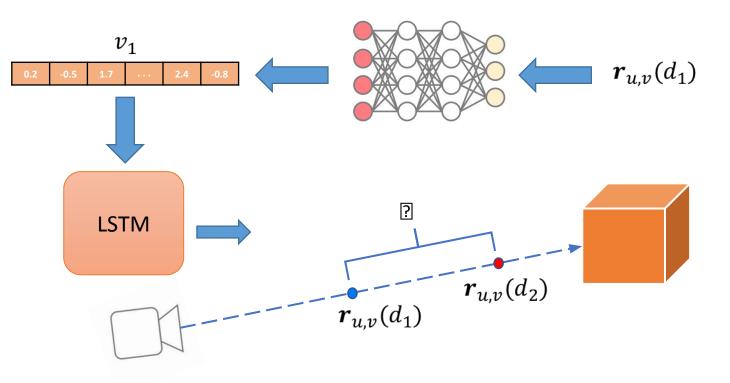
Parametrize ray marching out of pixel (u, v):



$$\mathbf{r}_{u,v}(d) = \mathbf{R}^T (\mathbf{K}^{-1} \begin{pmatrix} u \\ v \\ d \end{pmatrix} - \mathbf{t})$$

1: function FINDINTERSECTION(
$$\Phi$$
, K, E, (u, v))
2: $d_0 \leftarrow 0.05$
3: $(\mathbf{h}_0, \mathbf{c}_0) \leftarrow (\mathbf{0}, \mathbf{0})$
4: for $i \leftarrow 0$ to max_iter do
5: $\mathbf{x}_i \leftarrow \mathbf{r}_{u,v}(d_i)$
6: $\mathbf{v}_i \leftarrow \Phi(\mathbf{x}_i)$
7: $(\delta, \mathbf{h}_{i+1}, \mathbf{c}_{i+1}) \leftarrow LSTM(\mathbf{v}, \mathbf{h}_i, \mathbf{c}_i)$
8: $d_{i+1} \leftarrow d_i + \delta$
9: return $\mathbf{r}_{u,v}(d_{max_iter})$

Parametrize ray marching out of pixel (u, v):



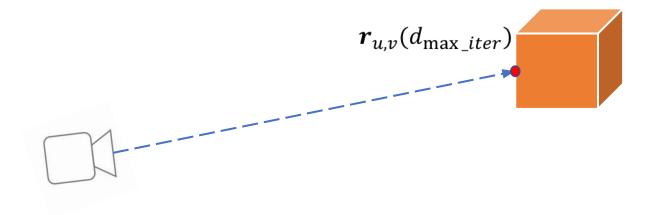
$$\mathbf{r}_{u,v}(d) = \mathbf{R}^T (\mathbf{K}^{-1} \begin{pmatrix} u \\ v \\ d \end{pmatrix} - \mathbf{t})$$

1: **function** FINDINTERSECTION(
$$\Phi$$
, **K**, **E**, (u, v))
2: $d_0 \leftarrow 0.05$
3: $(\mathbf{h}_0, \mathbf{c}_0) \leftarrow (\mathbf{0}, \mathbf{0})$
4: **for** $i \leftarrow 0$ to max_iter **do**
5: $\mathbf{x}_i \leftarrow \mathbf{r}_{u,v}(d_i)$
6: $\mathbf{v}_i \leftarrow \Phi(\mathbf{x}_i)$
7: $(\delta, \mathbf{h}_{i+1}, \mathbf{c}_{i+1}) \leftarrow LSTM(\mathbf{v}, \mathbf{h}_i, \mathbf{c}_i)$
8: $d_{i+1} \leftarrow d_i + \delta$
9: **return** $\mathbf{r}_{u,v}(d_{max_iter})$

Parametrize ray marching out of pixel (u, v):

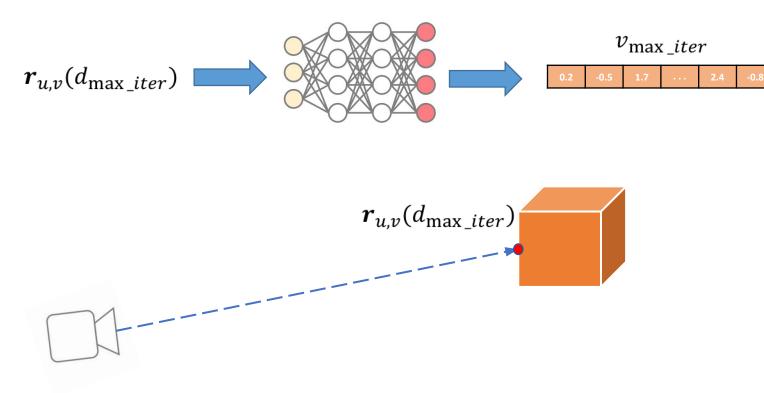
$$\mathbf{r}_{u,v}(d) = \mathbf{R}^T (\mathbf{K}^{-1} \left(egin{array}{c} u \ v \ d \end{array}
ight) - \mathbf{t})$$

1: **function** FINDINTERSECTION(
$$\Phi$$
, **K**, **E**, (u, v))
2: $d_0 \leftarrow 0.05$
3: $(\mathbf{h}_0, \mathbf{c}_0) \leftarrow (\mathbf{0}, \mathbf{0})$
4: **for** $i \leftarrow 0$ to max_iter **do**
5: $\mathbf{x}_i \leftarrow \mathbf{r}_{u,v}(d_i)$
6: $\mathbf{v}_i \leftarrow \Phi(\mathbf{x}_i)$
7: $(\delta, \mathbf{h}_{i+1}, \mathbf{c}_{i+1}) \leftarrow LSTM(\mathbf{v}, \mathbf{h}_i, \mathbf{c}_i)$
8: $d_{i+1} \leftarrow d_i + \delta$
9: **return** $\mathbf{r}_{u,v}(d_{max_iter})$



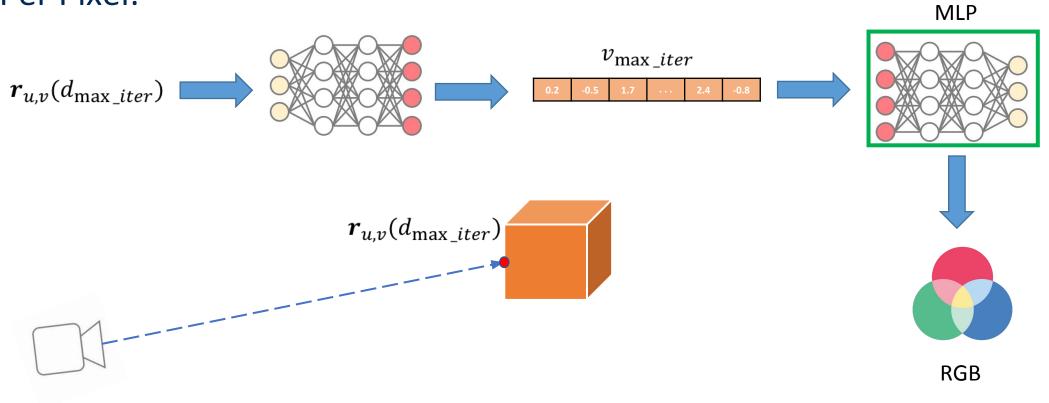
Pixel Generator

Per Pixel:

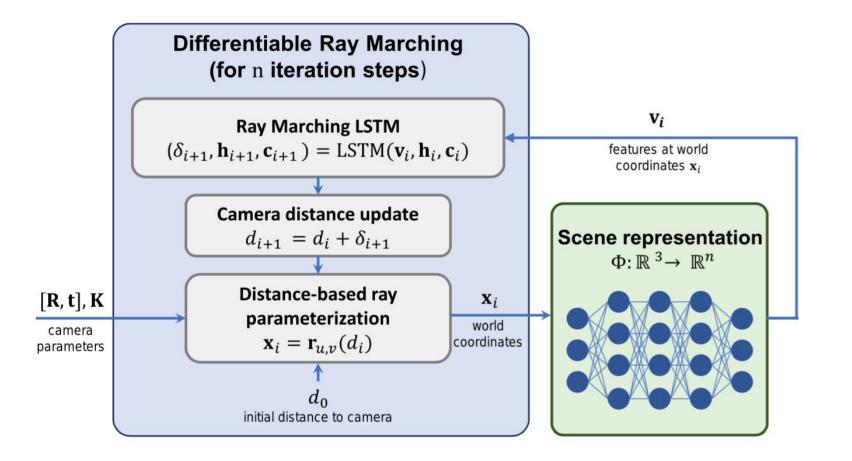


Pixel Generator

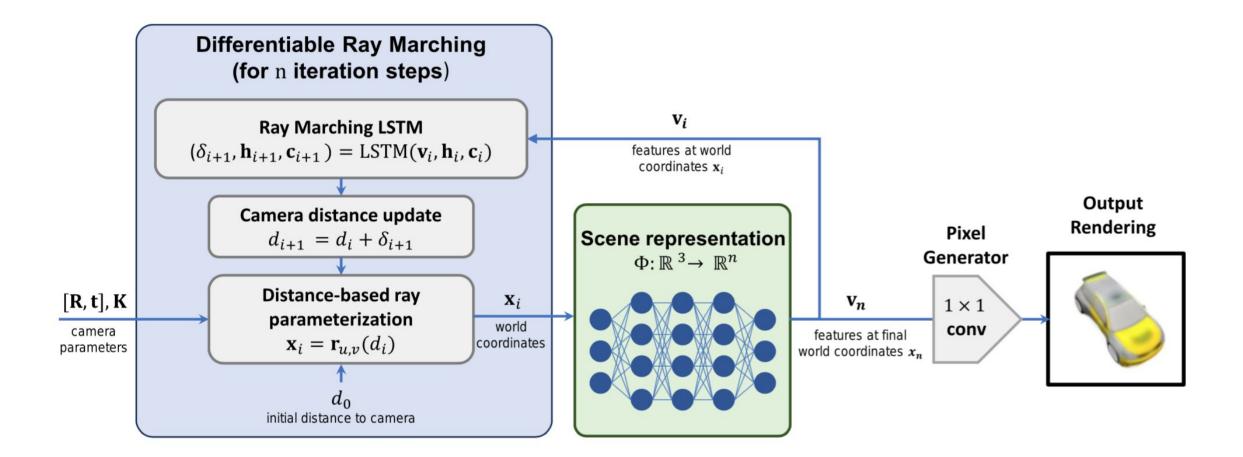
Per Pixel:

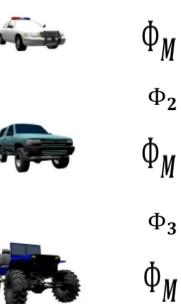


General Framework



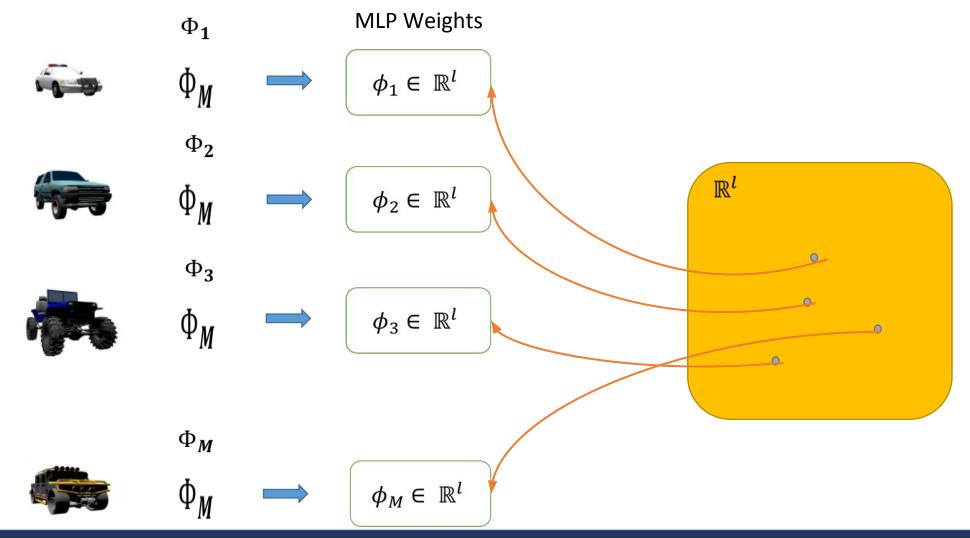
General Framework

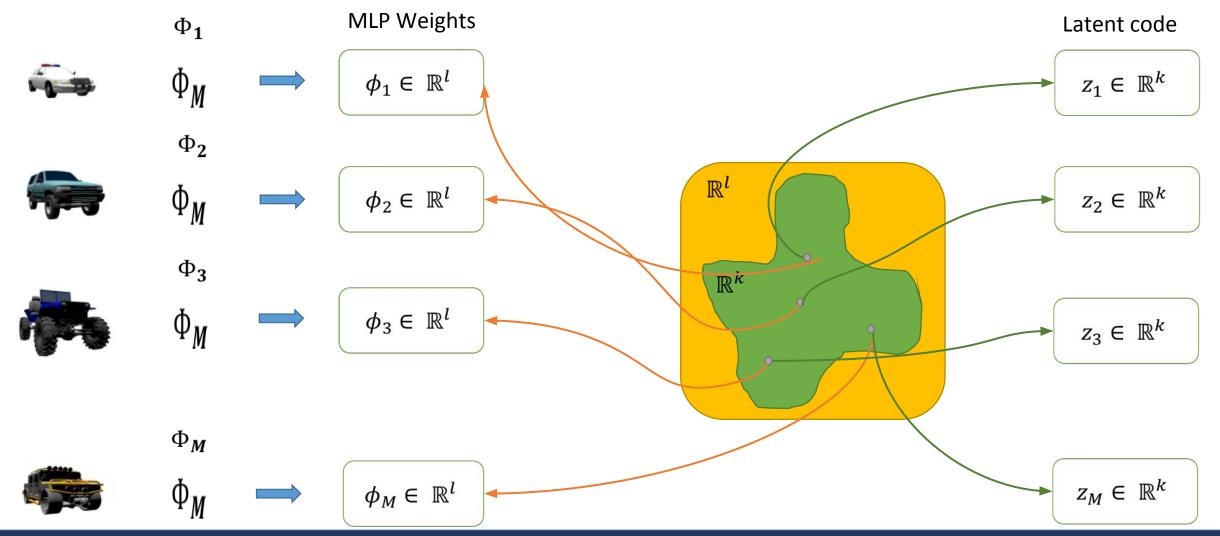


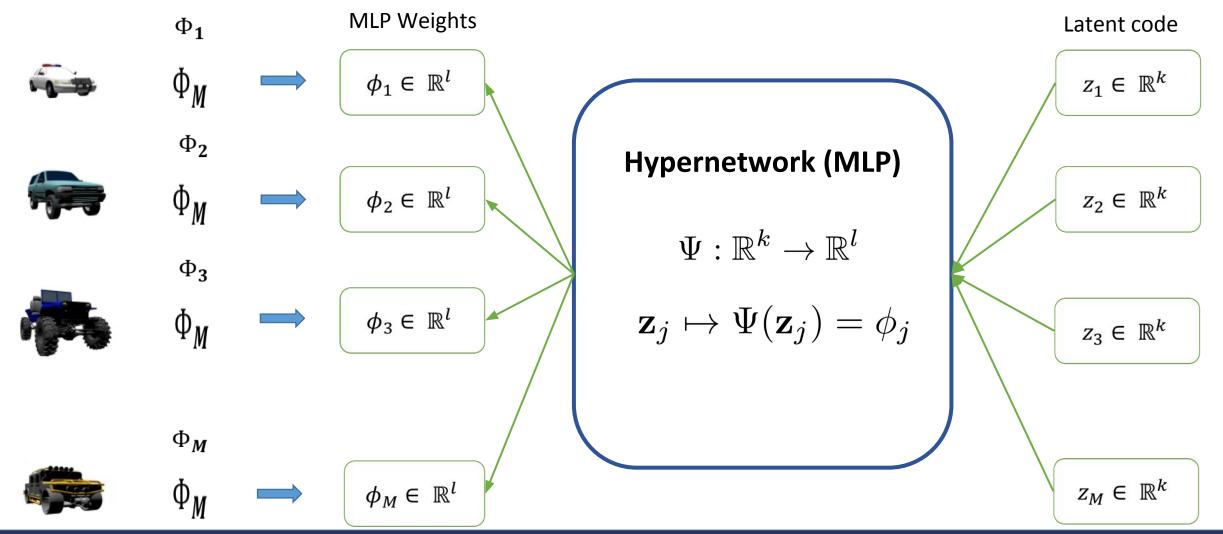


 Φ_M

 $\Phi_{\mathbf{1}}$







Joint optimization:

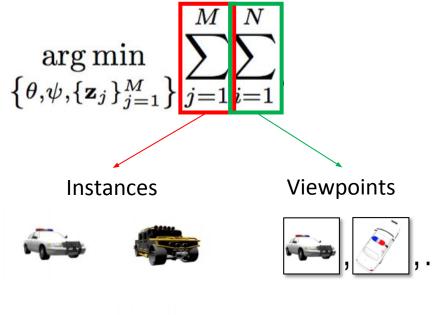
 $rgmin \ \left\{ egin{argmin} heta, \psi, \{\mathbf{z}_j\}_{j=1}^M \end{bmatrix}
ight\}$

 θ : Neural Renderer

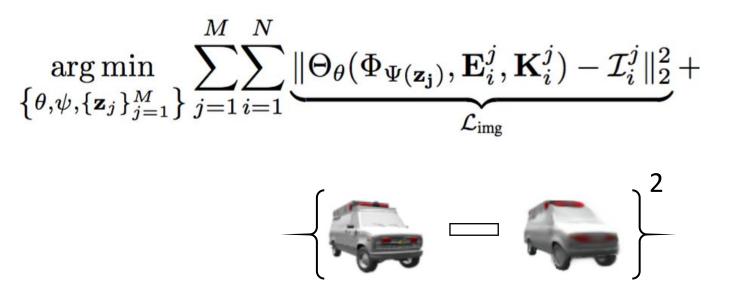
 ψ : Hypernetwork

z: Scene latent code

Joint optimization using SGD:

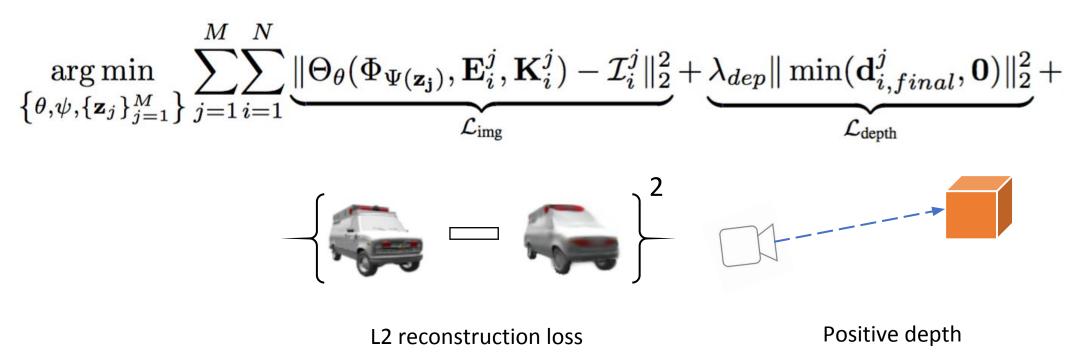


Joint optimization using SGD:

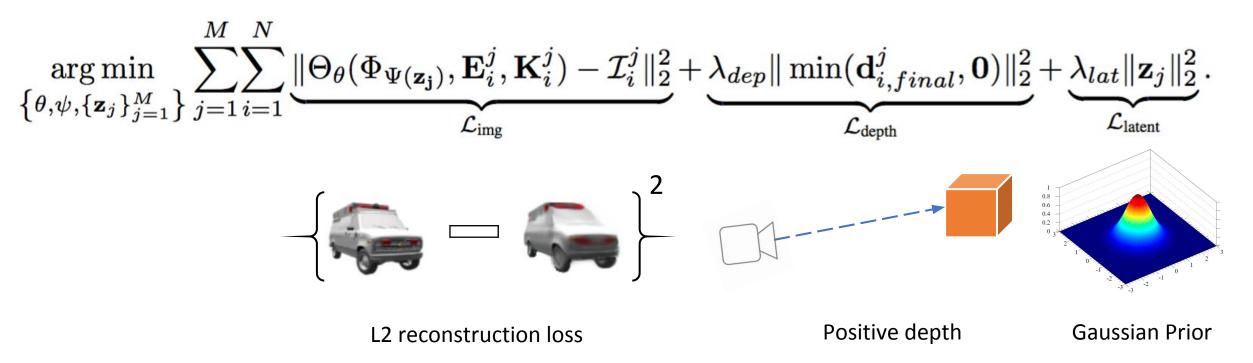


L2 reconstruction loss

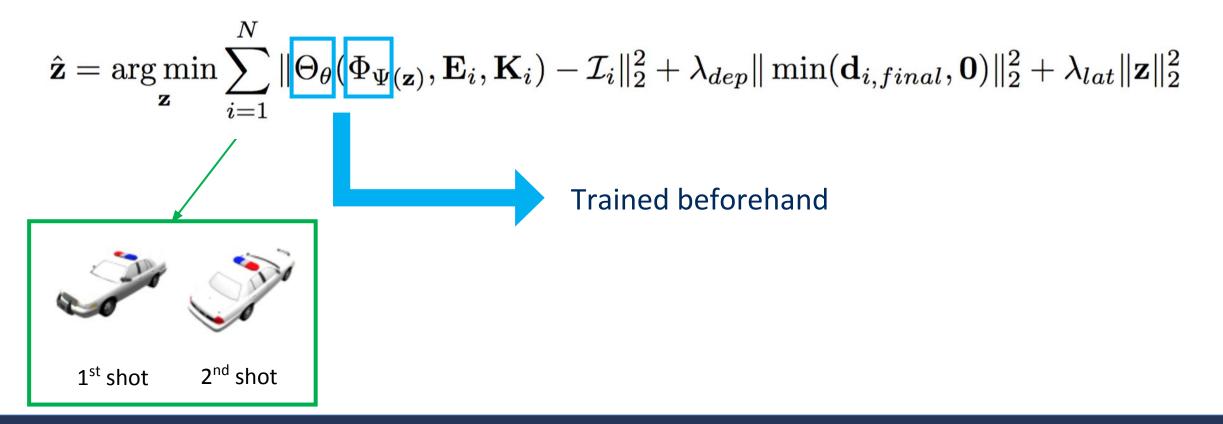
Joint optimization using SGD:



Joint optimization using SGD:



Few-shot (N = 1, 2):



Shepard Metzler

- 7 element objects
- Novel view synthesis on:
 - Training set
 - Few-shot on 100 test objects

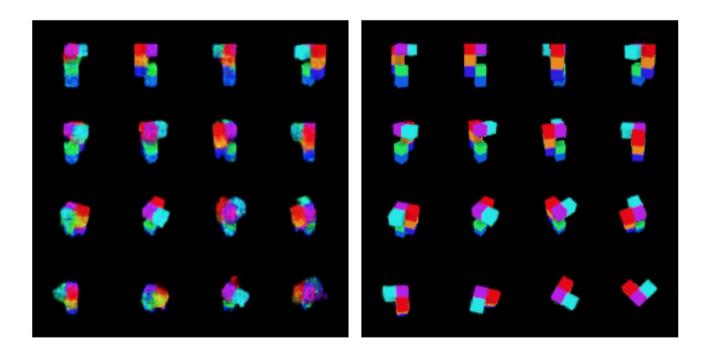


Figure 2: Shepard-Metzler object from 1k-object training set, 15 observations each. SRNs (right) outperform dGQN (left) on this small dataset.

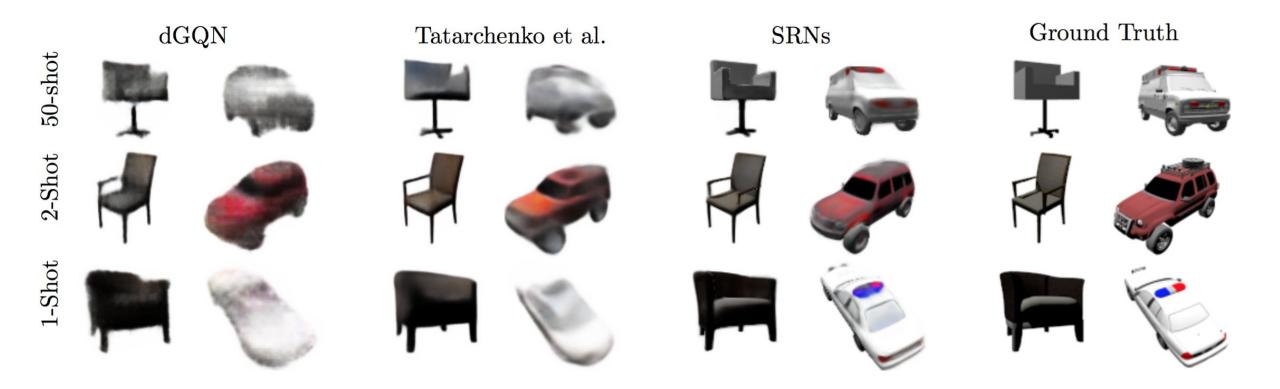
ShapeNet

- Cars and Chairs
- Novel view synthesis on:
 - Training set.
 - Few-shot on official test objects.

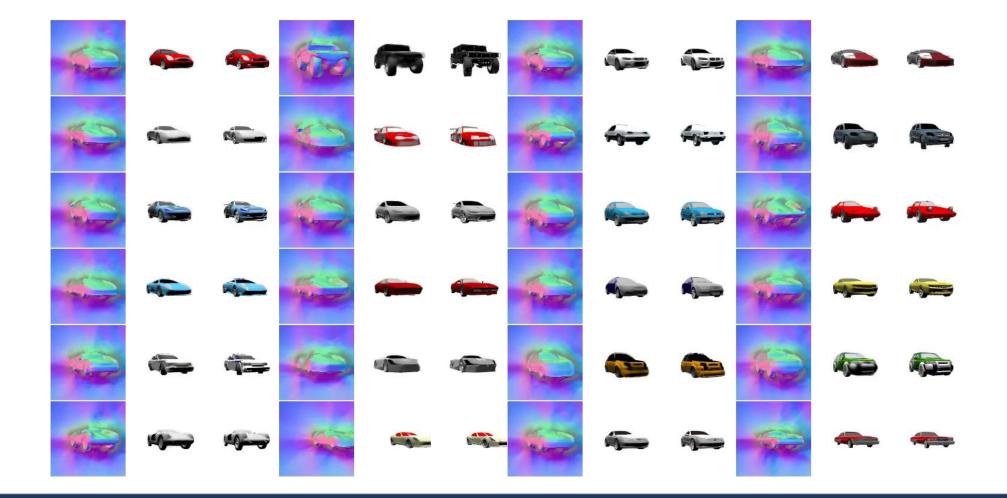
Figure 7: Single- (left) and two-shot (both) reference views.

	50 images (training set)		2 im	2 images		Single image	
	Chairs	Cars	Chairs	Cars	Chairs	Cars	
TCO [1]	24.31 / 0.92	20.38 / 0.83	21.33 / 0.88	18.41 / 0.80	21.27 / 0.88	18.15 / 0.79	
WRL [4]	24.57/0.93	19.16 / 0.82	22.28 / 0.90	17.20 / 0.78	22.11/0.90	16.89 / 0.77	
dGQN [2]	22.72 / 0.90	19.61 / 0.81	22.36 / 0.89	18.79 / 0.79	21.59/0.87	18.19 / 0.78	
SRNs	26.23 / 0.95	26.32 / 0.94	${f 24.48}/0.92$	22.94 / 0.88	22.89 / 0.91	20.72 / 0.85	

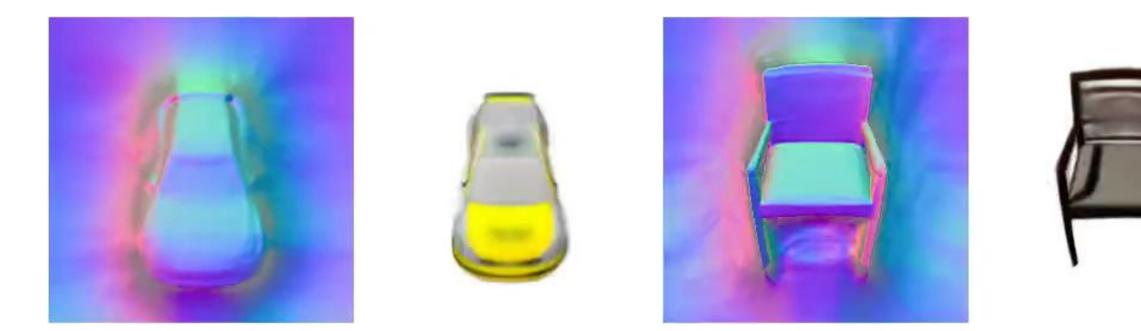
ShapeNet



ShapeNet



Latent space interpolation



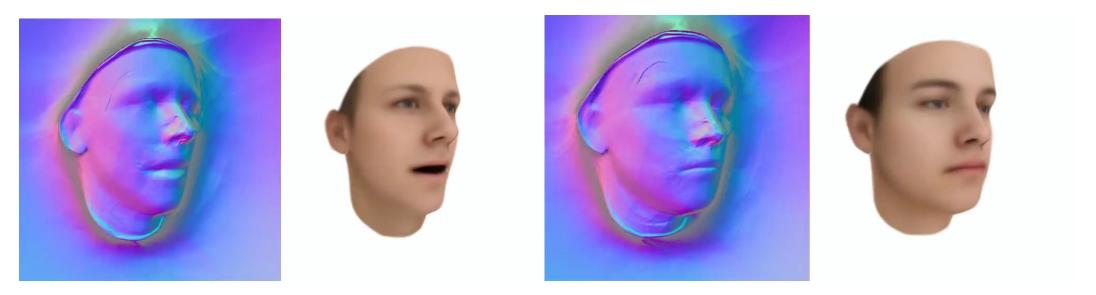
Camera pose extrapolation

Camera zoom

Camera rotation

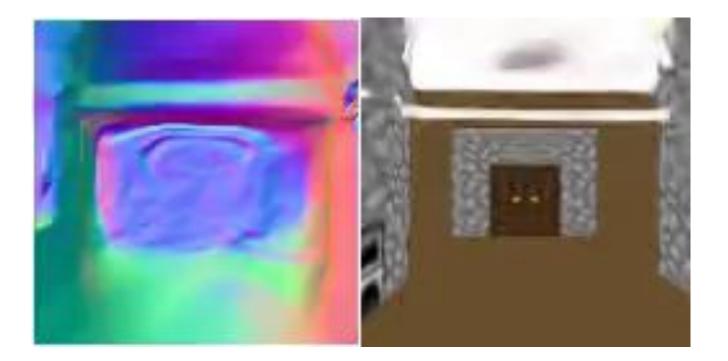
Basel face model

- Available disentangled latent:
 - Identity
 - Expression



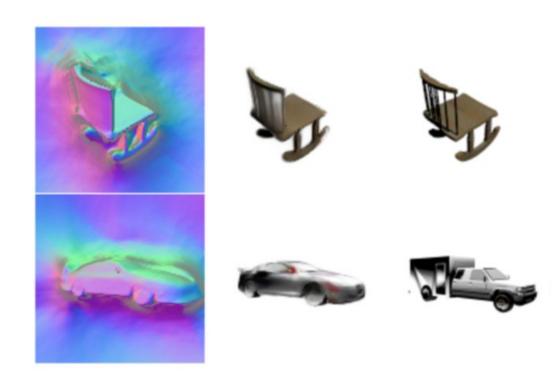
Minecraft room

Room scale scene



Critique / Limitations / Open Issues

- Availability of camera pose?
- Effects of view or lighting?
- Failure cases.



Critique / Limitations / Open Issues

- Modeling and architectural choices:
 - Pixel generator:
 - MLP vs CNN.
 - Texture details (Using positional encoding or sinusoidal activation function(Siren))
 - Computationally expensive hypernetwork ($\approx 10^7$ parameters).
 - What if we use Auto-Encoder? (instead of Auto-Decoder).
 - Meta learning (MetaSDF).
 - Ray marching
 - Expensive feed-forward of scene function for each step.
 - Weak convergence.

Contributions (Recap)

- A continuous, 3D structure aware, neural scene representation encoding geometry and appearance a multi-view consistent manner.
 - Along with a Differentiable ray marching algorithm for rendering.
- End-to-end training without explicit 3D supervision.
- Generalizable to other geometry or appearance.
- Evaluation in:
 - Novel view synthesis.
 - Few-shot reconstruction.
 - ...

Thank you!