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Main Problem

3D reconstruction without 3D supervision
* Generate a full 3D model
* Implicit function
* Train only with single RGB images
+ Camera intrinsics and extrinsics

+ Object masks

Reconstruction

Graphics




Motivation

Why do we want a 3D model as opposed to just
rendering?

Real world is 3D -> interaction requires a model

* Robotic applications

e Autonomous driving
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- Why unsupervised?

4 _

* Real world 3D supervision is not easy to gather *



Why is it hard and not already solved?

Reconstruction
Unsupervised Implicit Model:

* Requires good regularizers.
* Requires rendering back to image.

* Previous work mainly focused on shape
and ignored texture.

Unsupervised Implicit Model:

- Gradient through an implicit
function rendering (ray tracing)
was costly, infeasible, inaccurate.
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Contributions

1. Novelty (method)

a. They propose an analytic derivation
for the gradient of the implicit
function rendering.

b. Their model incorporates texture as
well as shape.

2. Results
a. SOTA on unsupervised Shapenet.
b. Realistic dataset results.

Implicit Model fy




General Background: Implicit Function

The Surface is modeled as the Root of a

parametric function. . . /
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Implicit Function Architecture
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Rendering with an Implicit function

Why f0 is a 3D model?
Given fp we can render it from any camera viewpoint.
How?

Ray tracing!

Take n equidistant candidate points that would be projected to u
for this camera angle.

I'(d) = rg + dw

p;” =r(jAs+s0)

Camera
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Rendering with an Implicit function

Why f0 is a 3D model?
Given fp we can render it from any camera viewpoint.
How?

Ray tracing!
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e Apply Secant Method
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Method overview

How to use implicit rendering for image autoencoding?

e = | ¢

Input Image True Depth D
$ Depth Loss
v (optional)

Y
~(2,9,2) 7 A
= (@2 Secant Method de Unprojection Y Ly
— w3l | g | Oy e RS e L ——

| I

e YL@ y2) '

Camera .
Occupancy Evaluation Predicted Depth D Texture Prediction Predicted Image i

Sampled Pixel



What is the issue? o,  Ote(p) Ote(p) Op
How to backpropagate efficiently?! 80 — 89 —I— af) . 89
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Main contribution: Analytical Derivation

Observation: Gradients only needs to be calculated at the surface: f@ (p) =T
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Main contribution
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Experimental Results: qualitative ShapeNet

Input  SoftRas Ours (Lre) Pixel2Mesh Ours (Lpeptn)
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Experimental Results: Chamfer Distance on
ShapeNet

2D Supervision 2.5D Supervision 3D Supervision
DRC (Mask) [ /7] SoftRas [*/] Ours (Lrgg) | DRC (Depth) [/“] Ours (Lpepm) | 3BDR2ZN2[17] ONet [“7] Pixel2Mesh [*(]

category

airplane 0.659 0.149 0.190 0.377 0.143 0.215 0.151 0.183
bench - 0.241 0.210 - 0.165 0.210 0.171 0.191
cabinet - 0.231 0.220 - 0.183 0.246 0.189 0.194
car 0.340 0.221 0.196 0.316 0.179 0.250 0.181 0.154
chair 0.660 0.338 0.264 0.510 0.226 0.282 0.224 0.259
display - 0.284 0.255 - 0.246 0.323 0.275 0.231
lamp - 0.381 0413 - 0.362 0.566 0.380 0.309
loudspeaker - 0.320 0.289 - 0.295 0.333 0.290 0.284
rifle - 0.155 0.175 - 0.143 0.199 0.160 0.151
sofa - 0.407 0.224 - 0.221 0.264 0.217 0.211
table - 0.374 0.280 - 0.180 0.247 0.185 0.215
telephone - 0.131 0.148 - 0.130 0.221 0.155 0.145
vessel - 0.233 0.245 - 0.206 0.248 0.220 0.201
mean | 0.553 0.266 0.239 | 0.401 0.206 | 0.277 0.215 0.210
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Experimental Results: Qualitative DETU

Compared with Poisson surface reconstruction (sPSR) on
mesh based approaches with a trimming of 5 or 7.

(a) Colmap 5 (b) Colmap 7 (c) Ours



Experimental Results: Quantitative DETU

Trim Param. Chamfer-1,

Tola [/~] + sPSR 0 1.826
Furu [ ] + sPSR 0 1.517
Colmap [© 7] + sPSR 0 1.303
Camp ['] + sPSR 0 1.441
Tola [/~] + sPSR 5 1.399
Furu [ ] + sPSR 5 1.311
Colmap [© /] + sPSR 5 1.091
Camp ["] + sPSR 5 1.331
Tola [ '“] + sPSR 7 0.910
Furu [ ] + sPSR 7 0.839
Colmap [©7] + sPSR 7 0.733
Camp ["] + sPSR 7 1.092
Ours (ERGB) = 0.907
Ours (ACRGB + £Depth) - 0.782




Effect of
adding a
surface

smoothness ’ e

I O S S (b) Our model (Lrgp) with A2 = 0.1

(c) Our model (Lrg) with Ao = 0.




Effect of
adding a
supervised
Depth signal

() Ours (Lres + Loeptn)



Effect of number of samples

Input 16 Samples 32 Samples 64 Samples 128 Samples
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Discussion of results

* On both of datasets they outperform previous unsupervised methods.
e So implicit functions are superior models to Voxel, point clouds and Mesh based models.

e They do not have any real world scene examples from Autonomous Driving or Game Engines
that simulate those.
* So they have not bridged the gap between real world (background, multiple objects)
and synthetic data yet.
* |tis only object centric reconstruction.




Critique / Limitations / Open Issues

Input Ours (Lpepth)
* Relying on camera intrinsics and object masks could be ;
as unrealistic as having 3D model or depth maps. < e

* Add canonicalization, unsupervised alignment?
« Add compositionality? @ %

=

* They fail on narrow/sharp geometrics. -
 Smarter ray tracing? A prior? Part decomposition? g ‘ | ’\'
i |




Contributions (Recap)

- Successful 3D unsupervised reconstruction
- Scalable to real world interactive domains (only object level)

- Better Chamfer Distance and scalability to real world images

- Key insight: integrate texture, use analytical derivatives




