CSC2457 3D & Geometric Deep Learning

NeMo: Neural Mesh Models of Contrastive Features for Robust 3D Pose Estimation Angtian Wang, Adam Kortylewski, Alan Yuille

Date: March 23rd 2021

Presenter: William Ngo

Instructor: Animesh Garg

Goal: (Robust) 3D Pose Estimation

Pose obtained either via its viewpoint or via specifying the locations of a fixed set of keypoints

Previous Method:

- 1. Keypoint-based approaches
 - Detect sparse set of key points & align a 3D object representation to the detection result.

(Tulsiani et. al, 2015)

• Desire: robustness to occlusion

(Zia et. al, 2013)

Previous Method

2. Rendering-based approaches

• Utilize a generative model, that is built on a dense 3D mesh representation of an object. They estimate the object pose by reconstructing the input image (render-and-compare)

Problem:

- They model objects in terms of image intensities
- Color is not relevant to pose estimation!
- Mesh Representation for every shape instance

Contributions

- Develop Framework for 3D Pose Estimation Under Occlusion
 - Generative Model of Features in terms of the mesh input
 - Previous rendering-based approaches require detailed instance-specific mesh representations of targets
 - NeMo achieves competitive 3D pose estimation using a mesh representation which only crudely approximates the true object geometry with a cuboid
 - State of the art performance on PASCAL3D+, occluded-PASCAL3D+ and ObjectNet3D

General Background

3D object pose estimation involves prediction of 3 spherical angles:

- Azimuth (a)
- Elevation (e)
- In-plane rotation (θ)

Of an object relative to the camera

Define a Rotation Matrix

$$R = R_Z(\theta)R_X(e - \pi/2)R_Z(-a)$$

(Xiang et. al, 2014)

Problem Setting

Goal: Determine rotation matrix with respect to the input image, given target class and the given mesh of the object.

NeMo Render-and-Compare: Feature Map

Problem Setting

Let's denote the following:

- Feature representation of the input image I: $\Phi(I) = F^l \in \mathbb{R}^{H imes W imes D}$
 - l Denotes the output of a layer l of a CNN
- 3D vertices of mesh: $\Gamma = \{r \in \mathbb{R}^3 | r = 1, \dots, R\}$
- Feature Vectors at each vertex: $\Theta = \{ heta_r \in \mathbb{R}^D | r = 1, \dots, R \}$
- 3D Neural Mesh Model: $\mathfrak{N} = \{\Gamma, \Theta\}$
- Rendered Feature Map: $\bar{F}(m) = \Re(\mathfrak{N}, m) \in \mathbb{R}^{H \times W \times D}$
 - m: camera pose (ground truth rotation is used during training time)

NeMo Render-and-Compare: Feature Map

NeMo Render-and-Compare: Feature Map

• Learn Generative Model $\overline{F}: p(F|\mathfrak{N}_y)$

Approach

- True Distribution should follow the feature extracted from the CNN backbone (F)
- Define Likelihood as follows: $p(F|\mathfrak{N}_y, m, B) = \prod_{i \in \mathcal{FG}} p(f_i|\mathfrak{N}_y, m) \prod_{i' \in \mathcal{BG}} p(f_{i'}|B).$
 - \mathcal{FG} is set of all positions on the 2D lattice of the feature map F that are **covered by the** neural mesh mode

- Calculated by projecting mesh onto the image using the ground truth camera pose m
- Think of it as visible projected vertices in the image

- 3D vertices of mesh: $\Gamma = \{r \in \mathbb{R}^3 | r = 1, \dots, R\}$
- Feature Vectors at each vertex: $\Theta = \{\theta_r \in \mathbb{R}^D | r = 1, \dots, R\}$ 3D Neural Mesh Model: $\mathfrak{N} = \{\Gamma, \Theta\}$

- Define foreground feature likelihood to be Gaussian: $p(f_i|\mathfrak{N}_y,m) = \frac{1}{\sigma_r\sqrt{2\pi}} \exp\left(-\frac{1}{2\sigma_r^2} \|f_i \theta_r\|^2\right)$
 - Note: the correspondence between θ_r and f_i is defined between the projection of the vertices onto the 2D lattice given the parameter camera pose.
- Background features are also modelled as Gaussian: $p(f_{i'}|B) = \frac{1}{\sigma\sqrt{2\pi}} \exp\left(-\frac{1}{2\sigma^2} ||f_{i'} \beta||^2\right)$
 - Mean background Vector, "clutter vector": β

NeMo Render-and-Compare: Feature Map

• Want to optimize the following:

Approach

- Maximum likelihood to such that the generative model's distribution matches with the image features (Make \bar{F} as close as possible to F)
- The CNN backbone used for feature extraction should be optimized to make the individual feature vectors as distinct from each other as possible (Make features in *F* as distinct as possible)

Maximum Likelihood Estimation of the generative Model:

$$\mathcal{L}_{ML}(F, \mathfrak{N}_y, m, B) = -\ln p(F|\mathfrak{N}_y, m, B)$$

= $-\sum_{i \in \mathcal{FG}} \ln \left(\frac{1}{\sigma_r \sqrt{2\pi}}\right) - \frac{1}{2\sigma_r^2} ||f_i - \theta_r||^2$
+ $\sum_{i' \in \mathcal{BG}} \ln \left(\frac{1}{\sigma\sqrt{2\pi}}\right) - \frac{1}{2\sigma^2} ||f_{i'} - \beta||^2$

If we constrain the variances: $\{\sigma^2 = \sigma_r^2 = 1 | \forall r\}$

$$\mathcal{L}_{ML}(F, \mathfrak{N}_y, m, B) = -C \sum_{i \in \mathcal{FG}} \|f_i - \theta_r\|^2 + \sum_{i' \in \mathcal{BG}} \|f_{i'} - \beta\|^2$$

NeMo Render-and-Compare: Feature Map

NeMo Render-and-Compare: Feature Map

Contrastive Learning in backbone: $C = \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum$

$$\mathcal{L}_{Feature}(F, \mathcal{FG}) = -\sum_{i \in \mathcal{FG}} \sum_{i' \in \mathcal{FG} \setminus \{i\}} \|f_i - f_{i'}\|^2$$
$$\mathcal{L}_{Back}(F, \mathcal{FG}, \mathcal{BG}) = -\sum_{i \in \mathcal{FG}} \sum_{j \in \mathcal{BG}} \|f_i - f_j\|^2.$$

Contrastive Loss encourages features on the object to be distinct from each other (feature vector at front tire should be different from those at the back tire)

Overall Loss: $\mathcal{L}(F, \mathfrak{N}_y, m, B) = \mathcal{L}_{ML}(F, \mathfrak{N}_y, m, B) + \mathcal{L}_{Feature}(F, \mathcal{FG}) + \mathcal{L}_{Back}(F, \mathcal{FG}, \mathcal{BG})$

Now we have trained our network, both the CNN backbone (F) and the generative model (\bar{F})

Question: I still don't get it, how does the model determine the camera pose parameter at inference time?

Answer: At inference time, Given an initial camera pose estimate, it will perform gradient descent to find an optimal camera pose estimate.

Question: With respect to what cost will it perform gradient descent on?

Answer: Reconstruction Loss between the Foreground Score Map and Background Score Map and Reconstruction Loss of (F with \bar{F})

$$p(F|\mathfrak{N}_y, m, B, z_i) = \prod_{i \in \mathcal{FG}} \left[p(f_i|\mathfrak{N}_y, m) p(z_i=1) \right]^{z_i} \left[p(f_i|B) p(z_i=0) \right]^{(1-z_i)} \prod_{i' \in \mathcal{BG}} p(f_{i'}|B)$$

• Where z_i is a binary variable that allows the background model $p(f_i|B)$ to explain the locations in F that are in the FG, but the foreground model $(f_i|\mathfrak{N}_y, m)$ can't explain well.

Question: Wait a second? Don't we need a detailed mesh for every instance?

Answer: No, we can have a much simpler mesh for every instance (cuboid).

To evaluate, first define $\Delta(R_1, R_2) = \frac{\|log(R_1^T R_2)\|_F}{\sqrt{2}}$

• It represents the geodesic distance function over the manifold of rotation matrices

 $\Delta(R_{gt}, R_{pred})$ captures the difference between ground truth rotation and predicted rotation matrix

They report the following:

- Median of the rotation error
- Accuracy at theta: fraction of instances whose predicted rotation is within a fixed threshold of the target rotation (they use pi/6 and pi/18)

PASCAL3D+ and Occluded PASCAL3D+ results

Evaluation Metric	$ACC_{\frac{\pi}{6}}\uparrow$				$ACC_{\frac{\pi}{18}}$ \uparrow				$MedErr\downarrow$			
Occlusion Level	LO	L1	L2	L3	LO	L1	L2	L3	LO	L1	L2	L3
Res50-General	88.1	70.4	52.8	37.8	44.6	25.3	14.5	6.7	11.7	17.9	30.4	46.4
Res50-Specific	87.6	73.2	58.4	43.1	43.9	28.1	18.6	9.9	11.8	17.3	26.1	44.0
StarMap	89.4	71.1	47.2	22.9	59.5	34.4	13.9	3.7	9.0	17.6	34.1	63.0
NeMo	84.1	73.1	59.9	41.3	60.4	45.1	30.2	14.5	9.3	15.6	24.1	41.8
NeMo-MultiCuboid	86.7	77.2	65.2	47.1	63.2	49.9	34.5	17.8	8.2	13.0	20.2	36.1
NeMo-SingleCuboid	86.1	76.0	63.9	46.8	61.0	46.3	32.0	17.1	8.8	13.6	20.9	36.5

ObjectNet3D results

$ACC_{\frac{\pi}{6}}$ \uparrow	bed	bookshelf	calculator	cellphone	computer	cabinet	guitar	iron	knife
StarMap	40.0	72.9	21.1	41.9	62.1	79.9	38.7	2.0	6.1
NeMo-MultiCuboid	56.1	53.7	57.1	28.2	78.8	83.6	38.8	32.3	9.8
$ACC_{\frac{\pi}{6}}$ \uparrow	microwave	pen	pot	rifle	slipper	stove	toilet	tub	wheelchair
StarMap	86.9	12.4	45.1	3.0	13.3	79.7	35.6	46.4	17.7
NeMo-MultiCuboid	90.3	3.7	66.7	13.7	6.1	85.2	74.5	61.6	71.7

ObjectNet3D is more occluded than occluded PASCAL3D++

Generalization to unseen views

Evaluation Metric	AC	$C_{\frac{\pi}{6}}\uparrow$	AC	$C_{\frac{\pi}{18}}\uparrow$	Мес	$dErr\downarrow$
Data Split	Seen	Unseen	Seen	Unseen	Seen	Unseen
Res50-General	91.7	37.2	47.9	5.3	10.8	45.8
Res50-Specific	91.2	34.7	47.9	4.0	10.8	48.5
StarMap	93.1	49.8	68.6	13.5	7.3	36.0
NeMo-MultiCuboid	88.6	54.7	70.2	31.0	6.6	34.9
NeMo-SingleCuboid	88.5	54.3	68.6	27.9	7.0	35.1

Ablation Study

Table 4: Ablation study on PASCAL3D+ and occluded PASCAL3D+. All ablation experiments are conducted with the NeMo-MultiCuboid model. The performance is reported in terms of Accuracy (percentage, higher better) and Median Error (degree, lower better).

Evaluation Metric	$ACC_{\frac{\pi}{6}}\uparrow$				$ACC_{\frac{\pi}{18}}\uparrow$				$MedErr\downarrow$			
Occlusion Level	LO	L1	L2	L3	LO	L1	L2	L3	L0	L1	L2	L3
NeMo	86.7	77.3	65.2	47.1	63.2	49.2	34.5	17.8	8.2	13.1	20.2	36.1
NeMo w/o outlier	85.2	76.0	63.2	44.4	61.8	47.9	32.4	16.2	8.5	13.5	20.7	41.6
NeMo w/o contrastive	69.7	58.0	44.6	26.9	40.8	27.7	14.7	5.6	18.3	27.7	37.0	61.0

Critique / Limitations / Open Issues

- Doing gradient descent at inference time is expensive!
 - 8 seconds per image on a single GPU.
- Still requires a cuboid mesh matching with a similar dimension as the object with minimum volume
 - Consider trying cuboid meshes with larger volume than necessary
- Neural Mesh Model for each subtype in a category is trained

Contributions (recap)

Developped Framework for 3D Pose Estimation Under Occlusion

- Generative Model of Features in terms of the mesh input
- Previous rendering-based approaches require detailed instance-specific mesh representations of targets
 - NeMo achieves competitive 3D pose estimation using a mesh representation which only crudely approximates the true object geometry with a cuboid
- State of the art performance on PASCAL3D+, occluded-PASCAL3D+ and ObjectNet3D