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Main Problem

Goal: (Robust) 3D Pose Estimation

Pose obtained either via its viewpoint or via specifying the locations of
a fixed set of keypoints




Main Problem

Previous Method:

1. Keypoint-based approaches
* Detect sparse set of key points & align a 3D object representation to the

(Tulsiani et. al, 2015)
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Main Problem

* Desire: robustness to occlusion

(Zia et. al, 2013)



Main Problem

Previous Method

2. Rendering-based approaches

 Utilize a generative model, that is built on a dense 3D mesh representation of an object. They
estimate the object pose by reconstructing the input image (render-and-compare)

Problem:

* They model objects in terms of image
intensities

* Color is not relevant to pose estimation!

* Mesh Representation for every shape
instance




Contributions

* Develop Framework for 3D Pose Estimation Under Occlusion
* Generative Model of Featuresin terms of the mesh input

* Previous rendering-based approaches require detailed instance-specific mesh
representations of targets

* NeMo achieves competitive 3D pose estimation using a mesh representation which only
crudely approximates the true object geometry with a cuboid

e State of the art performance on PASCAL3D+, occluded-PASCAL3D+ and
ObjectNet3D



General Background

3D object pose estimation involves prediction of 3 spherical angles:
« Azimuth (a)
e Elevation (e)
* In-plane rotation ()

, , distance
Of an object relative to the camera

elevation

Define a Rotation Matrix

R=Rz(0)Rx(e—m/2)Rz(—a) <
(Xiang et. al, 2014)




Problem Setting

Goal: Determine rotation matrix with respect to the input image, given
target class and the given mesh of the object.

Vertex Feature Vectors
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NeMo Render-and-Compare: Feature Map
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Problem Setting

Letls d e n Ote th e fo | |0Wi ng: NeMo Render-and-Compare: Feature Map

* Feature representation of the input image I: ‘I)(I) = F! c RHXWXD
o [ Denotes the output of a layer [ of aCNN

3D verticesof mesh: I' = {r € R?|r = 1,..., R}
Feature Vectors at each vertex: © = {9 c RD|T = 1,. ,R}
3D Neural Mesh Model: 91 = {I", ©}

Rendered Feature Map: F'(m) = R(IM, m) € RY*W P
* m:camera pose (ground truth rotation is used during training time)
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Approach

e Learn Generative Model 7 :p(F'|9,)

NeMo Render-and-Compare: Feature Map

* True Distribution should follow the feature extracted from the CNN backbone (F)

* Define Likelihood as follows: p(F|91,,m, B) = H p(filN,, m) H p(fir|B).
1€ FG ' eBG

o F G is set of all positions on the 2D lattice of the feature map F that are covered by the
neural mesh mode

e Calculated by projecting mesh onto the image using the ground truth camera pose m

* Think of it as visible projected vertices in the image



* 3Dverticesof mesh: I' = {r € R’|r = 1,..., R}
s Feature Vectors at each vertex:® = {Qr € ]RD|7~ — 1, e R}
* 3D Neural Mesh Model: 91 = {I', ©}

Approach

* Define foreground feature likelihood to be Gaussian: »(fil9,,m) = Jr\l/%exp (—ﬁlﬁ - HT-HQ)

 Note: the correspondence between 9 and fi is defined between the projection of the
vertices onto the 2D lattice given the parameter camera pose.

. 1 1 2
* Background features are also modelled as Gaussian: ?(f#|B) =7 exp (—@Hﬁ" Bl )

* Mean background Vector, “clutter vector”: 3



Vertex Feature Vectors
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* Want to optimize the following:

NeMo Render-and-Compare: Feature Map

* Maximum likelihood to such that the generative model’s distribution matches with the image
features (Make I as close as possible to F')

 The CNN backbone used for feature extraction should be optimized to make the individual
feature vectors as distinct from each other as possible (Make features in F' as distinct as
possible)
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Approach

Maximum Likelihood Estimation of the generative Model:
[-:ML(F: my:ma B) - 1np(F|my:ma B)
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If we constrain the variances: {0? = 02 = 1|Vr}

NeMo Render-and-Compare: Feature Map

Ly (F 0y, m,B) = =C ) _Ifi= 0l + > llfu =B

1€FG ' eEBG
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Approach

Contrastive Learning in backbone:

['Feature F, ]:g Z Z ”f?» f?»’”2

1€ FG e FG\{i}

Lpack(F,FG,BG) ==Y > |fi— fl*

1€ FG jeBG

NeMo Render-and-Compare: Feature Map

Contrastive Loss encourages features on the object to be distinct from each other
(feature vector at front tire should be different from those at the back tire)

Overall Loss: [,(F, my;m; B) — £ML(F7 m’yama B) + [-:Fea,ture(Fa Fg) +£Back(Fa fgaBg)



Approach

m: camera parameter <@

Backward

Now we have trained our network, both the CNN backbone (F) and the
generative model ( F)

Question: | still don’t get it, how does the model determine the camera
pose parameter at inference time?

Answer: At inference time, Given an initial camera pose estimate, it will
perform gradient descent to find an optimal camera pose estimate.



Loss Landscape
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Approach

Neural Mesh Model

m: camera parameter
Backward

Question: With respect to what cost will it perform gradient descent on?

Answer: Reconstruction Loss between the Foreground Score Map and Background
Score Map and Reconstruction Loss of (F with F')

p(FIN,,m, B,z) = [[ p(fil0y, m)p(z=1)1" [p(fi|B)p(2=0)]" ") T] p(f+|B)

(ASNIY i'eBG

« Where Zi is a binary variable that allows the background model »(f:|B) to explain the
locations in F that are in the FG, but the foreground model (fi|91y,m) can’t explain well.



Approach

Question: Wait a second? Don’t we need a detailed mesh for every instance?

Answer: No, we can have a much simpler mesh for every instance (cuboid).

Original Mesh Models

Original Mesh Mode| Cuboid for Each Subtype \ Cuboid for All Subtypes

FC 1 ear |

(b) MultiCuboid

(¢) SingleCuboid



Discussion of results

To evaluate, first define A(Ry, Ry) = WOQ(R%RE)HF

* It represents the geodesic distance function over the manifold of rotation matrices

A(Rgt, Rprea) captures the difference between ground truth rotation and
predicted rotation matrix

They report the following:
* Median of the rotation error

* Accuracy at theta: fraction of instances whose predicted rotation is within a fixed threshold
of the target rotation (they use pi/6 and pi/18)



Discussion of results

PASCAL3D+ and Occluded PASCAL3D+ results

Evaluation Metric ACC= 71 ACC = 1 MedErr |

Occlusion Level Lo 1t r2 13 ,LO0O L1 L2 L3 |LO LI L2 L3
Res50-General 88.1 70.4 52.8 37.8144.6 253 145 6.7 |11.7 179 304 46.4
Res50-Specific 87.6 73.2 584 43.1143.9 28.1 186 99 |11.8 17.3 26.1 44.0
StarMap 894 71.1 47.2 229|595 344 139 37 | 9.0 17.6 34.1 63.0
NeMo 84.1 73.1 59.9 41.3|60.4 45.1 30.2 14.5| 9.3 156 24.1 41.8
NeMo-MultiCuboid |86.7 77.2 65.2 47.1/63.2 499 345 17.8| 8.2 13.0 20.2 36.1
NeMo-SingleCuboid | 86.1 76.0 63.9 46.8|61.0 46.3 32.0 17.1| 8.8 13.6 20.9 36.5




Discussion of results

ObjectNet3D results

AC’C% 1 bed bookshelf calculator cellphone computer cabinet guitar iron  knife
StarMap 40.0 72.9 21.1 41.9 62.1 799 38.77 2.0 6.1
NeMo-MultiCuboid 56.1 53.7 57.1 28.2 78.8 83.6 38.8 323 9.8
AC’C% T microwave  pen pot rifle slipper  stove toilet tub wheelchair
StarMap 86.9 124 45.1 3.0 13.3 79.7 35.6 464 17.7
NeMo-MultiCuboid 90.3 3.7 66.7 13.7 6.1 85.2 74.5 61.6 71.7

ObjectNet3D is more occluded than occluded PASCAL3D++



Discussion of results

Generalization to unseen views

=== [Eyaluation Metric ACC= 1 ACC= 1 MedErr |
H/ \ Data Split Seen Unseen | Seen Unseen | Seen Unseen
\ Res50-General 91.7 37.2 47.9 5.3 10.8 45.8
o] '« | Res50-Specific 012 347 | 479 40 | 108 485
\ /| StarMap 93.1 498 | 686 135 | 73 360
\ / NeMo-MultiCuboid 88.6 54.7 70.2 31.0 6.6 34.9
BN NeMo-SingleCuboid | 88.5 54.3 68.6 27.9 7.0 35.1



Discussion of results

Ablation Study

Table 4: Ablation study on PASCAL3D+ and occluded PASCAL3D+. All ablation experiments are
conducted with the NeMo-MultiCuboid model. The performance is reported in terms of Accuracy
(percentage, higher better) and Median Error (degree, lower better).

Evaluation Metric ACC= 1 ACC= 1 MedErr |
Occlusion Level LO L1 L2 L3 |LO L1 L2 L3 |LO LI L2 L3
NeMo 86.7 77.3 65.2 47.163.2 49.2 34.5 17.8| 8.2 13.1 20.2 36.1

NeMo w/o outlier 85.2 76.0 63.2 444161.8 479 324 16.2| 85 13.5 20.7 41.6
NeMo w/o contrastive | 69.7 58.0 44.6 26.9 |40.8 27.7 14.7 5.6 |18.3 27.7 37.0 61.0




Critique / Limitations / Open Issues

* Doing gradient descent at inference time is expensive!

e 8 seconds perimage on a single GPU.

e Still requires a cuboid mesh matching with a similar dimension as the
object with minimum volume

* Consider trying cuboid meshes with larger volume than necessary

* Neural Mesh Model for each subtype in a category is trained



Contributions (recap)

* Developped Framework for 3D Pose Estimation Under Occlusion
e Generative Model of Features in terms of the mesh input

* Previous rendering-based approaches require detailed instance-specific mesh
representations of targets

* NeMo achieves competitive 3D pose estimation using a mesh representation which only
crudely approximates the true object geometry with a cuboid

e State of the art performance on PASCAL3D+, occluded-PASCAL3D+ and
ObjectNet3D



