CSC2457 3D & Geometric Deep Learning

CNNs on Surfaces using Rotation-Equivariant Features

Ruben Wiersma, EImar Eisemann, Klaus Hildebrandt

Date: March 9, 2021
Presenter: Shichen Lu

Instructor: Animesh Garg

UNIVERSITY OF

% TORONTO




Motivation

 We want to be able to be
able to do typical CV tasks,
but for surfaces/manifolds

* This is hard due to
irregularity, non-Euclidean
nature, etc.

* Geometric Deep Learning:
how can we extract
features from these
manifolds?
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Motivation — Approach Types

* Spectral methods (e.g. Graph Convolutional Network[1])

* Do convolution based on the graph Laplacian
* Targeted more towards meshes/graphs than surfaces

* GNNs

* Again target more towards meshes/graphs than surfaces

e Point Clouds (e.g. Pointnet[2])
* Loss of expressiveness

* Symmetric Spaces (e.g. Spherical CNNs[3])
 Specialized approaches for symmetric surfaces
* Limited to symmetric surfaces
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Motivation — Approach Types

* Charting based method
* Learn a 2D Kernel

* Define a tangent plane at the point
we want to do the convolution

e Orient the kernel onto the tangent

plane -
* Map points on the tangent plane to \‘ A&b

the surface (or vice versa) /&
. B
* Do the convolution
* Repeat for every point of interest

[=]




Motivation — Problem

* We want to apply a 2D convolution filter
to a surface

* Problem: Rotation ambiguity

* Traditional filters output different features
based on the rotation of the input

* For tangent planes on a surface, there is no
predefined coordinate system

* With which rotation should we apply the
convolution filter?
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Motivation — Previous Approaches

* Define a coordinate system at each point of the surface based on a
metric (e.g. ACNN[4])

e Cannot guarantee consistency of coordinate systems in local neighbourhood
of a point (umbilic points)

 Sample multiple rotations and compute convolutions for all of them
(e.g. GCNN[5])
 Computationally expensive
e Cannot sample in every direction -> discretization or interpolation
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Contributions

* Introduce a generalizable, circular harmonics based convolution filter
for meshes that is rotation-equivariant

* Able to solve the rotational ambiguity problem and still capture feature
expressiveness

* Introduce Harmonic Surface Networks, which combines the above
with pooling and nonlinearity operations for surfaces to perform
classification/segmentation on meshes

* Achieves SOTA/competitive performance across multiple tasks
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Background — Vector Features

* Represent each feature as a 2D A i
vector, stored as a complex
number b T o _
. r= i +ib
0 Feature; are parameterized by r — |r| - (cos § + isin §)
the radius, r and the angle, 6 T i
W =l
V0
— - Re
d




Background — Rotations

* Rotation Invariant * Rotation Equivariant
* Rotating the input does not affect » Rotating the input also affects (i.e.
the output rotates) the output in the same
* The convolution filter will always way
output the same feature no matter * Considering vector features, a
the rotation of the input rotation of the input will rotate the

output vector by the same amount
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Background — Harmonic Networks

e A rotation equivariant network used for CV

e Use circular harmonics to construct the convolution filter

Wi (r, 0, R, B) = R(r)e'™0*F)

* R(+) is learnt radial profile, ( is a learnt offset, m is rotation order
* Rotating the input to the filter is the same as rotating the output!

(Wi x x?1(p) = €™ [ Wy, % x°](p)



Background — Harmonic Networks

Rotation-invariant Rotation-equivariant
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Background — Harmonic Networks

Rotation-invariant Rotation-equivariant
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Background — Harmonic Networks

* Example Kernel
*R(r)=1-r
* B=0
* Dots on the input represent
“high magnitude” feature points

* Rot-Invariant smooths input

e Rot-Equivariant finds edges
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Background — Harmonic Networks

e Use different network streams for different rotation orders

* Convolution operation allows transfer between streams by changing
the m parameter

conv conv conv

e R s Al e L
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Background — Parallel Transport

* Manifolds are non-Euclidean spaces

—> we cant directly compare vectors
from different points

 What we can do is “transport” a
vector from one point to another

and then compare them at the
same point

 Vectors are transported by
“moving” them along a curve while

keeping the vector locally
equivalent
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Background — Exponential Map

* For each point on a manifold,
we can define a tangent plane

* The Exponential Map maps
from a point on the tangent

plane to a corresponding point
on the manifold

e We can use this to apply 2D 1PV
kernels to a surface by

mapping the surface point to
the 2D tangent plane
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Problem Setting

* Input:
* Triangle mesh of an object
* Qutput:
* Shape classification: determine class of an input mesh

* Shape segmentation: correctly label each point on the mesh

* Shape correspondence: find matching points between two meshes of similar
shape
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Method — Convolution Kernel

(D Z W, (R(ru)e"( 0+R)p, (}(1)))

JEN

New feature at point i

* Example convolution operation from rotation invariant stream to
rotation equivariant stream

* Parallel Transport + Circular Harmonics eliminates rotation ambiguity
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Method — Nonlinearities and Pooling

* Features are vector valued and stored as complex numbers

* Apply RelLU to the radius component of the feature + a bias

C—ReLUp(Xe') = ReLU(X + b)e'

* Pooling works the same way, but with parallel transported features

(l+1) (1)
< =g 2 B
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Method — Network Architecture

RN i

16 M=0 —n oc °C
GD 48

| 16 [l C_} Concatenate
Vdn, Vdn, 32 M=1 —' O C (+)—(®

= ResNet block = Convolution of order m @ = C-RelLU @ = Sum
32 HCM - 32 | (RN




Method Accuracy

L . HSN (ours) | 96.1%
Results — Shape Classification NeshCNN | 91.0%
GWCNN 90.3%
Gl 88.6%
. . MDGCNN | 82.2%
 For this task, they use only the first GCNN 73_9;
half of the network and only train SG 62.6%
for % of the time vs other methods et it
e Dataset low amount of training .~
samples AT __/ N (R
< = Lall /f. ™ D
* May favor methods that use less & <IN\ g g
parameters
e Dataset has low quality meshes \IJ \ / 1 ( e
e Unfavourable for methods that rely N ’ y o /
on principal curvature / ‘ f / ’
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Results — Shape Segmentation

Method # Features  Accuracy
. HSN (ours) 3 91.14%
* Only sample 1024 points from MeshCNN 5 92.30%
SNGC 3 91.02%
eaCh meSh to rEduce PointNet++ 3 90.77%
computation time MDGCNN 64 89.47%
. . . Toric Cover 26 88.00%
e Potentially could achieve higher DynGraphCNN | 64 86407
accuracy with more samples GCNN 64 86.40%
ACNN 3 83.66%

* Visualized results for one feature
stream in 2"9 |ast layer
* Featureis both high-activation and

rotationally aligned for certain
body parts




Results — Correspondence

 Left: meshes with same connectivity between shapes
* Right: meshes with irregular connectivity between shapes
* HSN seems to be more robust to connectivity differences in meshs
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Results — Discussion

* MeshCNN sometimes better, but deals explicitly with meshes. The
proposed approach is more general and can in theory deal with
surfaces and point clouds

e Significantly better than MDGCNN and GCNN, which follow a similar
charting method, while using less compute

e Parameter usage is 75% of MDGCNN and 30% of GCNN
e Uses ~2-4x less memory than MDGCNN
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Results — Ablation

e Toy Dataset of MNIST Mapped to Shape Classitication
3 Sphere Method Streams (M = ...) Accuracy
HSN 0,1 96.1%
e “PC Aligned” uses principal HSN 0 36.1%
curvature to assign basis vectors HSN (pc aligned) | 0, 1 49.7%

for tangent planes instead of

using Parallel Transport :
& P _ Shape Segmentation
e Streams=0 uses only the rotation

invariant kernel Method Streams (M = ...) Accuracy
. . . HSN 0,1 91.14%
* Overall, the rotation equivariant "HsSN 0 38.74%
kernel + parallel transport greatly HSN (parameters x4) | 0 87.25%
: HSN (pc aligned) 0,1 86.22%
increases accuracy
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Limitations

e Requires Vector Heat Method for several calculations
* This performs poorly with poor mesh quality, or too few elements

e Results are not the best

e Outperformed by MeshCNN in segmentation

* Another paper has shown HSN performing just average in correspondence
tasks [6]

* Computational Processing

e Requires many pre-computed operations that can struggle for complex tasks
* Needs to down-sample #vertices for training time
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Conclusion

 We have seen Harmonic Surface Networks for surface classification,
segmentation, and correspondence

* Uses a rotation-independent approach to solve the rotation
ambiguity problem

* Achieves SOTA/competitive performance
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