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Motivation

• We want to be able to be 
able to do typical CV tasks, 
but for surfaces/manifolds

• This is hard due to 
irregularity, non-Euclidean 
nature, etc.

• Geometric Deep Learning: 
how can we extract 
features from these 
manifolds?



Motivation – Approach Types

• Spectral methods (e.g. Graph Convolutional Network[1])
• Do convolution based on the graph Laplacian 
• Targeted more towards meshes/graphs than surfaces

• GNNs
• Again target more towards meshes/graphs than surfaces

• Point Clouds (e.g. Pointnet[2])
• Loss of expressiveness

• Symmetric Spaces (e.g. Spherical CNNs[3])
• Specialized approaches for symmetric surfaces
• Limited to symmetric surfaces



Motivation – Approach Types

• Charting based method
• Learn a 2D Kernel

• Define a tangent plane at the point 
we want to do the convolution

• Orient the kernel onto the tangent 
plane

• Map points on the tangent plane to 
the surface (or vice versa)

• Do the convolution

• Repeat for every point of interest



Motivation – Problem 

• We want to apply a 2D convolution filter 
to a surface

• Problem: Rotation ambiguity
• Traditional filters output different features 

based on the rotation of the input

• For tangent planes on a surface, there is no 
predefined coordinate system

• With which rotation should we apply the 
convolution filter?



Motivation – Previous Approaches

• Define a coordinate system at each point of the surface based on a 
metric (e.g. ACNN[4])
• Cannot guarantee consistency of coordinate systems in local neighbourhood 

of a point (umbilic points) 

• Sample multiple rotations and compute convolutions for all of them 
(e.g. GCNN[5])
• Computationally expensive

• Cannot sample in every direction -> discretization or interpolation



Contributions

• Introduce a generalizable, circular harmonics based convolution filter 
for meshes that is rotation-equivariant
• Able to solve the rotational ambiguity problem and still capture feature 

expressiveness

• Introduce Harmonic Surface Networks, which combines the above 
with pooling and nonlinearity operations for surfaces to perform 
classification/segmentation on meshes

• Achieves SOTA/competitive performance across multiple tasks



Background – Vector Features

• Represent each feature as a 2D 
vector, stored as a complex 
number

• Features are parameterized by 
the radius, 𝑟 and the angle, 𝜃



Background – Rotations

• Rotation Invariant
• Rotating the input does not affect 

the output

• The convolution filter will always 
output the same feature no matter 
the rotation of the input

• Rotation Equivariant
• Rotating the input also affects (i.e. 

rotates) the output in the same 
way

• Considering vector features, a 
rotation of the input will rotate the 
output vector by the same amount



Background – Harmonic Networks

• A rotation equivariant network used for CV

• Use circular harmonics to construct the convolution filter

• 𝑅(∙) is learnt radial profile, 𝛽 is a learnt offset, 𝑚 is rotation order

• Rotating the input to the filter is the same as rotating the output!



Background – Harmonic Networks

Rotation-equivariant
𝑅 𝑟 𝑒𝑖 𝜃+𝛽

Rotation-invariant
𝑅 𝑟 𝑒𝑖𝛽

Example Kernel
𝑅 𝑟 = 1 − 𝑟
𝛽 = 0
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Background – Harmonic Networks

• Example Kernel
• 𝑅 𝑟 = 1 − 𝑟

• 𝛽 = 0

• Dots on the input represent 
“high magnitude” feature points

• Rot-Invariant smooths input

• Rot-Equivariant finds edges



Background – Harmonic Networks

• Use different network streams for different rotation orders

• Convolution operation allows transfer between streams by changing 
the 𝑚 parameter



Background – Parallel Transport

• Manifolds are non-Euclidean spaces 
→ we cant directly compare vectors 
from different points

• What we can do is “transport” a 
vector from one point to another 
and then compare them at the 
same point

• Vectors are transported by 
“moving” them along a curve while 
keeping the vector locally 
equivalent



Background – Exponential Map

• For each point on a manifold, 
we can define a tangent plane

• The Exponential Map maps 
from a point on the tangent 
plane to a corresponding point 
on the manifold

• We can use this to apply 2D 
kernels to a surface by 
mapping the surface point to 
the 2D tangent plane



Problem Setting

• Input: 
• Triangle mesh of an object

• Output: 
• Shape classification: determine class of an input mesh

• Shape segmentation: correctly label each point on the mesh

• Shape correspondence: find matching points between two meshes of similar 
shape



Method – Convolution Kernel

• Example convolution operation from rotation invariant stream to 
rotation equivariant stream

• Parallel Transport + Circular Harmonics eliminates rotation ambiguity



Method – Nonlinearities and Pooling

• Features are vector valued and stored as complex numbers

• Apply ReLU to the radius component of the feature + a bias

• Pooling works the same way, but with parallel transported features



Method – Network Architecture



Results – Shape Classification

• For this task, they use only the first 
half of the network and only train 
for ¼ of the time vs other methods

• Dataset low amount of training 
samples
• May favor methods that use less 

parameters

• Dataset has low quality meshes
• Unfavourable for methods that rely 

on principal curvature



Results – Shape Segmentation

• Only sample 1024 points from 
each mesh to reduce 
computation time
• Potentially could achieve higher 

accuracy with more samples

• Visualized results for one feature 
stream in 2nd last layer
• Feature is both high-activation and 

rotationally aligned for certain 
body parts



Results – Correspondence

• Left: meshes with same connectivity between shapes

• Right: meshes with irregular connectivity between shapes

• HSN seems to be more robust to connectivity differences in meshs



Results – Discussion 

• MeshCNN sometimes better, but deals explicitly with meshes. The 
proposed approach is more general and can in theory deal with 
surfaces and point clouds

• Significantly better than MDGCNN and GCNN, which follow a similar 
charting method, while using less compute
• Parameter usage is 75% of MDGCNN and 30% of GCNN

• Uses ~2-4x less memory than MDGCNN



Results – Ablation

Shape Classification

Shape Segmentation

• Toy Dataset of MNIST Mapped to 
a Sphere

• “PC Aligned” uses principal 
curvature to assign basis vectors 
for tangent planes instead of 
using Parallel Transport

• Streams=0 uses only the rotation 
invariant kernel

• Overall, the rotation equivariant 
kernel + parallel transport greatly 
increases accuracy



Limitations

• Requires Vector Heat Method for several calculations
• This performs poorly with poor mesh quality, or too few elements

• Results are not the best
• Outperformed by MeshCNN in segmentation

• Another paper has shown HSN performing just average in correspondence 
tasks [6]

• Computational Processing
• Requires many pre-computed operations that can struggle for complex tasks

• Needs to down-sample #vertices for training time



Conclusion

• We have seen Harmonic Surface Networks for surface classification, 
segmentation, and correspondence

• Uses a rotation-independent approach to solve the rotation 
ambiguity problem

• Achieves SOTA/competitive performance
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