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Motivation and Main Problem

Learning a representation for generating high resolution 3D shapes
remains an open challenge. This paper introduces a method for
learning to generate the surface of 3d shapes.
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3D Point Cloud

(@) Possible Inputs  (b) Output Mesh from the 2D Image (c) Output Atlas (optimized) (d) Textured Output {e) 3D Printed Output

Figure 1. Given input as either a 2D image or a 3D point cloud (a), we automatically generate a corresponding 3D mesh (b) and its atlas
parameterization (c). We can use the recovered mesh and atlas to apply texture to the output shape (d) as well as 3D print the results (e).




Motivation and Main Problem

The Importance: Forms the basis of many applications in 3D —

Autoencoding shapes

Parametrization



Motivation and Main Problem

The issues:

* memory issues with certain representations
* l[ow resolution mesh formation

e parametrization of meshes and many more
Still an open problem?

* Voxel grid based methods are memory intensive
* no surface connectivity(tesselation)

* automatically estimating correspondences from training shapes to the
base meshes (gets increasingly hard for heterogeneous datasets).



Contributions

- Problem: Learning to generate the surface of 3D shapes

- Importance and hardness: Generating surface meshes with better
precision for varied applications

- Key issue of prior work: Low precision with memory and tessellation
Issues

- Key insight: In the decoder, sample points from a 2D plane(unit
square) to generate multiple patches in 3D

- Result of this insight: Generated surface mesh with better precision
and without causing any memory issues compared to other related
work




General Background
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3D-R2,N2: A unified approach for single and multi-view Hierarchical surface prediction for 3D object reconstruction.
3D object reconstruction, ECCV 2016 3DV 2017

Natural, conceptually simple Heavy or complicated



General Background
Generating points : PointSetGen

Fan, H., Su, H., & Guibas, L. A point set generation network for 3d object reconstruction from a single image. CVPR 2017

* Simple * Unstructured point cloud



General Background
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General Background

Chamfer distance We define the Chamfer distance be-
tween S1, Sy C R? as:

dcp(S1,52) = Z yllliblvl |z — y||3 + Z 1.ni51'1 lz — y||5
TES A yEeS? acice.

Take 2 sets: S1 and S2




Problem Setting

* Here, an MLP with ReLUs @4 with parameters 6 can locally generate a surface by
learning to map points in R? to surface points in R3. To generate a given surface,

we use several of these.

* Let A be a set of points sampled in the unit square ]0,1[* and S* a set of points
sampled on the target surface. Next, we incorporate the shape feature x (latent
vector) by simply concatenating them with the sampled point coordinates p € A

before passing them as input to the MLPs. Goal '
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Problem Setting

* We then minimize the Chamfer loss between the set of generated 3D points and
S*, thus optimizing the loss based on the Chamfer distance metric
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Approach

Key idea 1: deform a surface
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Learnt simply by sampling many points and minimizing Chamfer distance



Approach

Key idea 2: learn an atlas
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Experimental Results

The proposed approach was evaluated on the standard ShapeNet Core
dataset.

Chamfer distance and Metro criteria(to compare the output meshes
with the ground truth for mesh connectivity) used. The proposed

method outperforms the Points baseline method. Method CD | Metro
Oracle 2500 pts 0.85 1.56
Latent shape Generated Oracle 125K pts - 1.26
representation 3D points Points baseline 1.91 :
oo Points baseline + normals | 2.15 | 1.82 (PSR)
——|  MIP | elg et Ours - 1 patch 184 | 153
o’ Ours - | sphere 1720 152
¢ Ours - 5 patches 1.57 | 148
(a) Points baseline. Ours - 25 patches 1.56 147
Ours - 125 patches 1.51 1.41




Experimental Results
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(a) Ground truth (b) Pts baseline (c) PSR on ours (d) Ours sphere (e) Ours 1 (f) Ours 5 (g) Ours 25 (h) Ours 125

Figure 3. Auto-encoder. We compare the original meshes (a) to meshes obtained by running PSR on the point clouds generated by the
baseline (b) and on the densely sampled point cloud from our generated mesh (c), and to our method generating a surface from a sphere (d), 1
(e), S (), 25 (g), and 125(h) learnable parameterizations. Notice the fine details in (g) and (h) : e.g. the plane’s engine and the jib of the ship.



Experimental Results
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(a) Not trained on chairs (b) Trained on all categories
Figure 4. Generalization. (a) Our method (25 patches) can gen-

erate surfaces close to a category never seen during training. It,
however, has more artifacts than if it has seen the category during
training (b), e.g., thin legs and armrests.




Experimental Results
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(a) Input (b)) 3D-R2N2 (c) HSP (d) PSG (e) Ours

Figure 5. Single-view reconstruction comparison. From a 2D RGB image (a), 3D-R2N2
reconstructs a voxel-based 3D model (b), HSP reconstructs a octree-based 3D model

(c), PointSet- Gen a point cloud based 3D model (d), and our AtlasNet a triangular
mesh (e).



Experimental Results

Reference Inferred
object atlas correspondences

Optimized Atlas A

(a) Shape interpolation. (b) Shape correspondences. (c) Mesh parameterization.

Figure 7. Applications. Results from three applications of our method.



Experimental Results

2500
points

250
points

(a) Low-Res Input (b) High-Res reconstruction

Figure 8. Super resolution. Our approach can generate meshes at arbitrary resolutions, and the pointnet encoder [25] can take pointclouds
of varying resolution as input. Given the same shape sampled at the training resolution of 2500, or 10 times less points, we generate high
resolution meshes with 122500 vertices. This can be viewed as the 3D equivalent of super-resolution on 2D pixels.



Discussion of results

The following conclusions can be drawn from the results:
1. Not as memory intensive as other approaches like voxel grids

2. This general purpose approach finds applications in various other domains like
shape interpolation, shape correspondence etc. that find their bases in auto-
encoding and representation of surfaces.

3. The resolution and precision of the mesh can be easily controlled by adjusting
the number of patches used in the decoder.

4. The proposed approach has good generalization capabilities (for unseen 3D
shapes)

The given conclusions are fully supported by the results, as they clearly indicate
both the qualitative (precision and resolution of meshes visually) and quantitative
(comparing the Chamfer distance metric and Metro metric) measures.



Critique / Limitations / Open Issues

1. When a small number of learned parameterizations are used, the network has to distort them
too much to recreate the object. This leads, when we try to recreate a mesh, to small triangles in
the learned parameterization space being distorted and become large triangles in 3D covering

undesired regions.

(a) Excess of distortion. Notice how, compared to the original point cloud (left), the generated pointcloud (middle) with 1 learned
parameterization is valid, but the mapping from squares to surfaces enforces too much distortion leading to error when propagating the

grid edges in 3D (right).



Critique / Limitations / Open Issues

2. As the number of learned parameterization increases, errorsin the topology of the reconstructed
mesh can be sometimes observed. In practice, it means that the reconstructed patches overlap, or

are not stitched together.
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(b) Topological issues. Notice how, compared to the original point cloud (left), the generated pointcloud (middle) with 125 learned
parameterizations is valid, but the 125 generated surfaces overlap and are not stiched together (right).




Contributions (Recap)

- Problem: Learning to generate the surface of 3D shapes

- Importance and hardness: Generating surface meshes with better
precision for varied applications

- Key issue of prior work: Low precision with memory and tessellation
Issues

- Key insight: In the decoder, sample points from a 2D plane(unit
square) to generate multiple patches in 3D

- Result of this insight: Generated surface mesh with better better
precision and without causing any memory issues compared to other
related work




